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Abstract

We study reserve price optimization in multi-phase second price auctions, where seller’s
prior actions affect the bidders’ later valuations through a Markov Decision Process (MDP).
Compared to existing works in the bandit setting, our work features three challenges (1)
inducing sufficiently truthful bids while exploring the underlying MDP dynamics, (2) mini-
mizing revenue regret when market noise distribution is unknown, and (3) learning to “act”
and to “price” in the multi-phase auction.

Our work proposes a mechanism addressing all three challenges by (1) a combination
of a new technique named “buffer periods” and inspirations from Reinforcement Learn-
ing (RL) with low switching cost, (2) a novel algorithm eliminating the need for pure
exploration rounds when market noise distribution is unknown, and (3) an extension of
LSVI-UCB to nonlinear reward functions. These techniques culminate in the Contextual-
LSVI-UCB-Buffer (CLUB) algorithm which achieves Õ(H5/2

√
K) revenue regret when the

market noise is known and Õ(H3
√
K) revenue regret when the noise is unknown with no

assumptions on bidders’ truthfulness.
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1. Introduction

Second price auction with reserve prices is one of the most popular auctions both in the-
ory (Nisan et al., 2007) and in practice (Roth and Ockenfels, 2002). While closed form
expressions for the optimal reserve price is known ever since the seminal work of Myerson
(1981), directly applying the result requires population information, such as the bidders’
valuations’ distribution, is known a priori. Various attempts have been made to weaken the
assumption, with one of the most prominent lines of literature being reserve price optimiza-
tion for repeated auctions in the contextual bandit setting (Amin et al., 2014; Golrezaei
et al., 2019; Javanmard and Nazerzadeh, 2019; Deng et al., 2020).

A limitation of existing works lies in the bandit assumption. Indeed, while reserve
price optimization is already challenging as-is, allowing the auction to be both contextual
and introducing temporal dependent dynamics, particularly, incorporating Markov Decision
Process (MDP) induced dynamics in the evolution of bidders’ preferences, open up a wider
range of problems for studying. For example, Dolgov and Durfee (2006) studies optimal
auction under the setting and developed novel resource allocation mechanisms, Jiang et al.
(2015) leverages both MDP and auctions to better analyze resource allocation in IaaS
cloud computing, and Zhao et al. (2018) uses deep Reinforcement Learning (RL) to study
sponsored search auctions. We refer interested readers to Athey and Segal (2013) for more
motivating examples. A question naturally arises: is it possible to optimize reserve prices
when bidders’ preferences evolve according to MDPs?

In this article, we provide an affirmative answer. Our work assumes that the state of the
auction is affected by the state and the seller’s action in the preceding step. To facilitate
interpretation, we refer to the seller’s action in this context as “item choice”: bidders’ later
preferences could be affected by the types of items sold in previous rounds, a phenomenon
well-documented by empirical works in auctions (Lusht, 1994; Jones et al., 2004; Lange
et al., 2010; Ginsburgh and Van Ours, 2007). As is the case in many real-world problems,
we assume that the underlying transition dynamics and the bidder’s valuations are both
unknown. We further emphasize that we do not make any truthfulness assumption on the
bidders, allowing them to be strategic with their reporting.

Our Contributions. We begin by summarizing the three key challenges we face. First,
bidders have the incentive to report their valuation untruthfully, in hopes of manipulating
the seller’s learned policy, through either overbidding or underbidding, making it difficult
to estimate their true preferences and the underlying MDP dynamics. Existing works such
as Amin et al. (2014); Golrezaei et al. (2019); Deng et al. (2020) do not apply due to technical
challenges unique to MDP. Second, when the market noise distribution is unknown, even
in the bandit setting existing literature often only obtains Õ(K2/3) guarantee (Amin et al.,
2014; Golrezaei et al., 2019) and Ω(K2/3) revenue regret lower bound exists (Kleinberg and
Leighton, 2003). Third, the seller’s reward function, namely revenue, is unknown, nonlinear,
and can not be directly observed from the bidders’ submitted bids and LSVI-UCB cannot
be directly applied.

We are able to address all three challenges with the CLUB algortihm. Motivated by
the ever increasing learning periods in existing works (Amin et al., 2014; Golrezaei et al.,
2019; Deng et al., 2020), our work further draws inspiration from RL with low switching
cost (Wang et al., 2021) and proposes a novel concept dubbed “buffer periods” to ensure
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that the bidders are sufficiently truthful. Additionally, we feature a novel algorithm we
dub “simulation” which, combined with a novel proof technique leveraging the Dvoret-
zky–Kiefer–Wolfowitz inequality (Dvoretzky et al., 1956), yields Õ(

√
K) revenue regret

under only mild additional assumptions. Finally, by exploiting the mathematical properties
of the revenue function, our work provides a provably efficient RL algorithm for when the
reward function is nonlinear.

1.1 Related Works

We summarize below two lines of existing literature pertinent to our work.

Price Optimization. There is a vast amount of literature on price estimation (Cesa-
Bianchi et al., 2014; Qiang and Bayati, 2016; Shah et al., 2019; Drutsa, 2020; Kanoria
and Nazerzadeh, 2020; Keskin et al., 2021; Guo et al., 2022). Deng et al. (2020) considers
a model where buyers and sellers are equipped with different discount rates, proposing a
robust mechanism for revenue maximization in contextual auctions. Javanmard et al. (2020)
proposes an algorithm with Õ(

√
T ) regret while Fan et al. (2021) achieves sublinear regret

in a more complex setting. Cesa-Bianchi et al. (2014) studies reserve price optimization in
non-contextual second price auctions, obtaining Õ(

√
T ) revenue regret bound. Drutsa (2017,

2020) studies revenue maximization in repeated second-price auction with one or multiple
bidders, proposing an algorithm with a O(log log T ) worst-case regret bound. However,
their setting is non-contextual and the cannot be applied to our setting.

Among this line of research, Golrezaei et al. (2019) is possibly the closest to our work.
The work assumes a linear stochastic contextual bandit setting, where the contexts indepen-
dent and identically distributed, achieving Õ(1) regret when the market noise distribution
is known and Õ(K2/3) when it is unknown and nonparametric. While the Õ(1) regret un-
der known market noise distribution seems to be better our bound, we remark that their
stochastic bandit setting does not require exploration over the action space required in our
work and, even in generic linear MDPs, a Ω(

√
K) regret lower bound exists (Jin et al.,

2020). Moreover, our algorithm achieves Õ(
√
K) regret when the market noise distribution

is not known, only with mild additional assumptions. Lastly, as we discussed previously,
the approaches in Golrezaei et al. (2019) cannot be directly applied in the MDP setting,
necessitating our novel algorithmic structure.

Efficient RL with Linear Function Approximation. Linear contextual bandit is a
popular model for online decision making (Rusmevichientong and Tsitsiklis, 2010; Abbasi-
Yadkori et al., 2011; Chu et al., 2011; Li et al., 2019; Lattimore and Szepesvári, 2020)
that has also been extensively studied from the auction design perspective (Amin et al.,
2014; Golrezaei et al., 2019). Its dynamic counterpart, Linear MDP, remains popular in
the analysis of provably efficient RL (Yang and Wang, 2019; Jin et al., 2020, 2021b; Yang
et al., 2020; Zanette et al., 2020; Jin et al., 2021a; Uehara et al., 2021; Yu et al., 2022; Wang
et al., 2021; Gao et al., 2021). In particular, Jin et al. (2020) is one of the first papers to
introduce the concept, proposing a provably efficient RL algorithm with O(

√
K) regret. Jin

et al. (2021b) generalizes the idea to offline RL.

While we use linear function approximation, the seller’s per-step reward function, rev-
enue, is non-linear. Our work also features novel per-step optimization problems to combat
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effects from untruthful reporting. While our work draws inspirations from Wang et al.
(2020) and Gao et al. (2021), as we discussed previously, these inspirations are needed to
for obtaining high quality estimates when the bidders are untruthful. Thus, our work differs
significantly from prior works on linear MDPs.

Notations. For any positive integer n we let [n] denote the set {1, . . . , n}. For any set A
we let ∆(A) denote the set of probability measures over A. For sets A, B, we let A×B be
the Cartesian product of the two.

2. Preliminaries

We consider a repeated (lazy) multi-phase second-price auction with personalized reserve
prices. Particularly, we assume that there are N rational bidders, indexed by [N ], and one
seller participating in the auction. For ease of presentation, we use “he” to refer to a specific
bidder and “she” the seller.

Second Price Auction with Personalized Reserve Prices. We begin by describing
a single round of the auction. Each bidder i ∈ [N ] submits some bid bi ∈ R≥0 and the seller
determines the personalized reserve prices for the bidders in the form of reserve price vector
ρ ∈ RN

≥0, with ρi denoting bidder i’s reserve price. The bidder with the highest bid only if
he also clear his personal reserve price, i.e., bi ≥ ρi. If the bidder i receives the item, he
pay the seller the maximum of his personalized reserve and the second highest bid, namely
max{ρi,maxj ̸=i bj}, which we dub mi for simplicity. When the bidder with the highest bid
fails to clear his personalized reserve price, the auction fails, the seller gains zero, and the
item remains unsold. In summary, bidder i receives the item if and only if bi ≥ mi and
the price he pays is mi. For any round of auction, we let qi = 1(bidder i receives the item)
indicate whether bidder i received the item or not. For the sake of convenience, throughout
the paper we assume that there are no ties in the submitted bids.

A Multi-Phase Second Price Auction. We now characterize the dynamics of the
multi-phase auction setting we study. Assume that the transition dynamic between rounds
can be modeled as an episodic Markov Decision Process (MDP)1. A multi-phase second price
auction with personalized reserves is parameterized as (S,Υ, H,P, {ri}Ni=1), with the state
space denoted by S, seller’s item choice space Υ2, horizon H, transition kernel P = {Ph}Hh=1

where Ph : S × Υ → ∆(S), and the individual bidders’ reward functions ri = {rih}Hh=1 for
all i ∈ [N ]. The choice of item υ ∈ Υ affects the bidders’ rewards as well as the transition.

The interaction between the bidders and the seller is then defined as follows. We assume
without loss of generality that the state at the initial step is fixed at some x1 ∈ S. For each
h ∈ [H], the seller and the bidders engage in a single round of second price auction. Given
the seller’s item choice at step h, υh, nature transitions to the next state according to the
transition kernel Ph.

1. We can easily extend our setting to that of an infinite-horizon MDP by improperly learning the process
as an episodic one. Here we focus on the finite-horizon case purely for simplicity of presentation.

2. Here we use “item choice” to better illustrate what Υ intuitively represents. The term can be extended
to more generic notions of seller’s action.
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Bidder Rewards. We assume that for each bidder i ∈ [N ] at time h ∈ [H], his reward1

depends on both the state x and item being auctioned off at that round υ ∈ Υ, which we
formalize as

rih(x, υ) = 1 + µih(x, υ) + zih, where zih
i.i.d.∼ F.

Here, zih denotes the randomness within bidders’ rewards and are drawn i.i.d. from the
market noise distribution F (·). We assume that F (·) is supported on [−1, 1] and has mean
0. Let µi,h : S ×Υ→ [0, 1] denote the conditional expectation of the reward less one, where
the constant is added to ensure rih(x, υ) ∈ [0, 3].

Policies and Value Functions. Before we describe the seller’s policy, we first discuss the
action space A = Υ × RN

≥0. At each h ∈ [H], the seller chooses some action ah = (υh, ρh),

comprising of item choice υ ∈ Υ and reserve price vector ρ ∈ RN
≥0. The seller’s policy is

then π = {πh}Hh=1, where πh : S → ∆(A). We let πυ and πρ denote the marginal item
choice and reserve price policies, respectively. Recall that the seller garners revenue only
when the item is sold to a bidder. At each h ∈ [H], her per-step expected revenue is then

Rh = E{zih}Ni=1

[∑N
i=1mih 1(mih ≤ bih)

]
, as we recall that mih = max{ρih,maxj ̸=i bjh} and

bidder i pays the seller mih if and only if bih ≥ mih. The value function (V-function) of the
seller’s revenue for any policy π and the action-value function (Q-function) isQπ

h : S×A → R
are then

V π
h (x) = Eπ

[
H∑

h′=h

Rh′(xh′ , ah′) | sh = x

]

and

Qπ
h(x, a) = Eπ

[
H∑

h′=h

Rh′(xh′ , ah′) | sh = x, ah = a

]
,

respectively.

Since the bidder reward only depends on state x and the choice of item υ instead of
reserve ρ, we have a family of mappings from S ×Υ to RN

≥0 that determines ρ. Therefore,
with a slight abuse of notation, we can rewrite our Q-function asQ(x, a) = Q(x, (υ, ρ(x, υ))),
restricting the role of setting reserve prices using such mappings without loss of generality.
From now, we use Q(s, v) to denote Q-function for simplicity. For any function f : S → R,
we define the transition operator P and the Bellman operator B as

(Phf)(x, a) = E[f(sh+1) | sh = x, ah = a], (Bhf)(x, a) = E[Rh(sh, ah)] + (Phf)(x, a)

respectively. Finally, we let π⋆ denote the optimal policy when the bidders’ reward functions,
the MDP’s underlying transition, and the market noise distribution are all known to the
seller. We remark that when these parameters are known, second price auctions with
personalized reserve prices are inherently incentive compatible and rational bidders will bid
truthfully.

1. Wes use the term “reward” to maintain consistency with existing RL literature.
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Performance Metric. The revenue suboptimality for each episode k ∈ [K] is

SubOptk(πk) = V π∗
1 (x1)− V πk

1 (x1),

with πk being the strategy used in episode k. Our evaluation metric is then the revenue
regret attained over K episodes, namely

Regret(K) =
K∑
k=1

SubOptk(πk). (1)

Impatient Utility-Maximizing Bidders. We assume the bidders are equipped with
some discount rate γ ∈ (0, 1) while the seller’s reward is not discounted. For sake of
simplicity, we assume γ is common knowledge. Bidder i’s utility at step h is given by
(rih(sh, νh) − mih)1(bih ≥ mih), as we note that he only receives nonzero utility upon
winning the auction. His objective is to maximize his discounted cumulative utility

Utilityi =

K∑
k=1

γkEπk

[
H∑

h=1

(rih(s
k
h, ν

k
h)−mk

ih)1(b
k
ih ≥ mk

ih) | sk1 = x1

]
.

Note that in practical applications, sellers are usually more patient than bidders and
discount their future rewards less. Consider sponsored search auction, where the seller
usually auctions off large numbers of ad slots every day. Bidders usually urgently need
advertisement and value future rewards less. On the other hand, the seller is not especially
concerned with slight decreases in immediate rewards. We refer the readers to Drutsa
(2017); Golrezaei et al. (2019) for a more detailed discussion on the economic justifications
of the assumption and emphasize that the assumption is necessary, as Amin et al. (2013)
shows that when the bidders are as patient as the seller, achieving sub-linear revenue regret
is impossible.

Linear Markov Decision Process. As a concrete setting, we study linear function
approximation.

Assumption 1. Assume that there exists known feature mapping ϕ : S × Υ → Rd such
that there exist d-dimension unknown (signed) measures Mh over S and unknown vectors
{θih}Ni=1 ∈ Rd that satisfy

Ph(x
′|x, υ) = ⟨ϕ(x, υ),Mh(x

′)⟩, µih(x, υ) = ⟨ϕ(x, υ), θih⟩

for all (x, υ, x′) ∈ S ×Υ× S, i ∈ [N ], and h ∈ [H]. Without loss of generality, we assume
that ∥ϕ(x, υ)∥ ≤ 1 for all (x, υ) ∈ S ×Υ, ∥Mh(S)∥ ≤

√
d, and ∥θih∥ ≤

√
d for all h ∈ [H]

and i ∈ [N ].

We close off the section by remarking that while the transition kernel Ph and the bidders’
individual expected reward functions {µi}Ni=1 are linear, the seller’s objective, revenue, is
not linear, differentiating our work from typical linear MDP literature (see Yang and Wang
(2019); Jin et al. (2020) for representative works).
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3. Known Market Noise Distribution

In this section, we present a version of CLUB when the market noise distribution is known.
We assume for convenience that K is known, as we can use the doubling trick (see Auer
et al. (2002) and Besson and Kaufmann (2018) for discussions) to achieve the same order
of regretwhen K is unknown or infinite.

3.1 CLUB Algorithm When F (·) is Known

Estimating µih can be challenging due to bidders’ untruthfulness. To punish untruthfulness,
we use a random pricing policy in the form of Algorithm 1. For each h ∈ [H], πrand randomly
chooses an item and a bidder, offering him the item with a reserve price drawn uniformly
at random. The bidder’s utility decreases whenever he reports untruthfully, risking either
not receiving the item when he underbids, or overpaying for an item when he overbids.

Algorithm 1 Definition of πrand
1: for h = 1, . . . ,H do
2: Randomly chooses an item υh ∈ Υh.
3: Choose a bidder i ∈ [N ] uniformly at random and offer him the item with reserve

price ρih ∼ Unif([0, 3]). Set other bidders’ reserve prices to infinite.
4: end for

A typical algorithm in bandit setting features πrand and a sequence of learning periods
that double in length (Amin et al., 2014; Golrezaei et al., 2019; Deng et al., 2020). Data
collected in all previous periods is used to update the policy at the end of each period. The
increasingly lengthy periods ensure that the seller switches policy less frequently, which
by extension ensures that the impatient buyers need to wait longer before benefiting from
untruthful reporting, deterring them from doing so.

Algorithm 2 Buffer Period with Known F (·)
1: Receives buffer start buffer.s(k̃ + 1) = k and end buffer.e(k̃ + 1) = k + 3 log k

log(1/γ) .

2: Do nothing for all episodes buffer.s(k̃ + 1) ≤ k < buffer.e(k̃ + 1), i.e. do nothing
during the buffer period before the end.

3: At the end of the buffer period, update policy estimate πk̃+1 and Q-function estimate

Q̂
πk̃+1

h (·, ·) using Algorithm 4, and then increment buffer period counter k̃ ← k̃ + 1.

Unfortunately the same technique does not work for MDPs, as the rate at which the
smallest eigenvalue of the covariance matrix estimate grows cannot be determined and we
cannot ensure our estimate of the underlying environment is not “stale” when we double
the length of the periods. Inspired by low-switching cost RL literature, we use the smallest
eigenvalue of the covariance matrix to determine when to start a new period, ensuring
our estimate is sufficiently close to the ground truth. However, the technique leads to yet
another challenge as we lose the ability to ensure sufficient delay before the buyers could
benefit from untruthful behavior. To combat this, we introduce a novel technique, “buffer
period”, explicitly focing the bidders to wait before starting a new learning period, thereby
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decreases the discounted utility the impatient bidders may gain from untruthfulness. More
concretely, we describe buffer periods in Algorithm 2.

Algorithm 3 Contextual-LSVI-UCB-Buffer (CLUB) with Known F

1: Initialize policy estimate π0, buffer period counter k̃ = 0, buffer period starting points
buffer.s(0) = 1, and buffer period end points buffer.e(0) = 1.

2: for episodes k = 1, . . . ,K do
3: Execute mixture policy 1

HK ◦ πrand + (1 − 1
HK ) ◦ πk̃, collecting outcomes qτih and

updating covariance matrices Λk
h ←

∑k
τ=1 ϕ(x

τ
h, υ

τ
h)ϕ(x

τ
h, υ

τ
h)

T + I for all h ∈ [H].

4: If there exists h ∈ [H] such that (Λ
buffer.e(k̃)
h )−1 ⪰ 2(Λk

h)
−1, schedule a new buffer

period starting at buffer.s(k̃ + 1) = k and ending at buffer.e(k̃ + 1) = k + 3 log k
log(1/γ)

using Algorithm 2.
5: end for

With buffer periods defined, we summarize CLUB’s update schedule in Algorithm 3 and
include Figure 1 for visual representation. Let 1

HK ◦πrand+(1− 1
HK )◦πk̃ represent a mixture

policy combining πrand and πk̃ where for each h, with probability 1
HK we act according to

πrand and with probability 1− 1
HK according to πk̃. For convenience, we assume buffer.e(k̃)

is an integer, as rounding up buffer.e(k̃) does not affect asymptotic regret. Unlike a typical
low switching cost RL algorithm, Algorithm 4 further delays updating for 3 log k

log(1/γ) episodes
after the switching criterion in line 4 is satisfied.

Figure 1: Learning periods and buffer periods.

The mixture policy sufficiently punishes untruthfulness. Combined with buffer periods
(Algorithm 2) and the update schedule (line 4), Algorithm 3 also limits the discounted
utility bidders gain from untruthfulness, thereby curbing excessive overbidding and/or un-
derbidding. While πrand is suboptimal, the mixture policy ensures that it is not executed
too many times, reducing its damage to revenue.

We now show that the learned parameters are sufficiently accurate. Whereas LSVI-UCB
directly learns from empirical rewards, here we use indicators qkih, which we recall is one if
bidder i receives the item at episode k step h and zero otherwise. As we cannot guarantee
that the empirical covariance matrix is positive definite, existing techniques in Amin et al.
(2014); Golrezaei et al. (2019) cannot be applied. We instead have

θ̂ih = argmin
∥θ∥≤2

√
d

buffer.e(k̃+1)∑
τ=1

(qτih − 1 + F (mτ
ih − 1− ⟨ϕ(xτh, υτh), θ⟩))2, (2)
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where ρτih is agent i’s reserve price and mτ
ih = max{maxj ̸=i b

τ
ih, ρ

τ
ih}. Equation (2) is justified

by the observation that, assuming that he bids truthfully, bidder i wins the auction with
probability 1−F (mτ

ih− 1−⟨ϕ(xτh, υτh), θ⟩), conditioned on xτh, υ
τ
h, and mτ

ih. Controlling the

uncertainty around θ̂ih then resembles controlling the uncertainty of a generalized linear
model with F (·) being the link function. As bidders need to overbid or underbid significantly
to alter the outcome of the auction, θ̂ih is less susceptible to untruthfulness.

We then tackle our final challenge: estimating nearly optimal policies. While we use a
typical linear function approximation assumption, the seller’s revenue function Rh is not
linear and we cannot directly apply existing approaches. We instead directly estimate Rh

and link our uncertainty on the seller’s revenue to the typical linear MDP uncertainty
quantifier, summarized Algorithm 4.

Algorithm 4 Estimation of Q̂
πk̃+1

h (·, ·)
1: Estimate θ̂ih using eq. (2) and set µ̂ih(·, ·)← ⟨ϕ(·, ·), θ̂ih⟩ for all i, h.
2: Estimate reserve price ρ̂ih(·, ·) = argmaxy y(1− F (y − 1− µ̂ih(·, ·))) for all i, h.
3: Estimate revenue R̂h(·, ·)← E[max{b̃−h (·, ·), ρ̂

+
h (·, ·)}1(b̃

+
h (·, ·) ≥ ρ̂+h (·, ·))].

4: for h = H, . . . , 1 do

5: Λh ←
∑buffer.e(k̃+1)

τ=1 ϕ(xτh, υ
τ
h)ϕ(x

τ
h, υ

τ
h)

T + λI.

6: ωh ← Λ−1
h

∑buffer.e(k̃+1)
τ=1 ϕ(xτh, υ

τ
h)[maxυ Q̂h+1(x

τ
h+1, υ)].

7: Q̂
πk̃+1

h (·, ·)← min{ωT
h ϕ(·, ·) + R̂(·, ·) + poly(logK)∥ϕ(·, ·)∥Λ−1

h
, 3H}.

8: πυ
k̃+1,h

(·)← argmaxv Q̂
πk̃+1

h (·, v).
9: πρi

k̃+1,h
(·)← ρ̂ih(·, πυ

k̃+1,h
(·)).

10: end for
11: Return {Q̂

πk̃+1

h (·, ·)}Hh=1 and {πk̃+1,h(·)}
H
h=1.

We let b̃+ and ρ+ denote the highest truthful bid and the highest reserve price, re-
spectively. Similarly, let b̃− and ρ− denote the second-highest. Algorithm 4 estimates the
Q-function optimistically by dividing the problem to two halves: per-step revenue estima-
tion (lines 1 to 3) and transition estimation (lines 4 to 10). In the first half, we use eq. (2)
to estimate all θih, which in turn gives estimates for bidders’ rewards in the form of µ̂ih.
We then feed the reward function estimates to line 2, yielding an estimate for the optimal
reserve price. With Algorithms 1, 2, and 3, the effects of untruthful reports are controlled,
and we can ensure that the revenue estimate is sufficiently close to the ground truth. With
ρih estimated, we then obtain revenue estimates for all states and item choices via line 3.

While the rest of Algorithm 4 resembles a typical LSVI-UCB algorithm (Jin et al., 2020),
we highlight several key differences. First, we use the plug-in revenue estimate, whereas
existing works estimates the Q-function with the empirically observed rewards. To accom-
modate the plug-in estimate, here ωh estimates PhVh+1, the transition operator applied to
the V-function, as opposed to BhVh+1, which uses the Bellman evaluation operator instead.
Lastly, in line 7 we link the uncertainty of revenue to the uncertainty bonus typically seen
in linear MDPs, thereby obtaining an optimistic estimate of the Q-function induced by
revenue. We conjecture the transition estimation procedure in Algorithm 4 can be changed
to other suitable online RL algorithms under other function approximation assumptions.
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3.2 Regret Bound When F (·) is Known

We introduce the following assumptions before we bound the regret. These regularity
assumptions are commonly found in economics literature (Kleiber and Kotz, 2003; Bagnoli
and Bergstrom, 2006).

Assumption 2. Market noise pdf f is bounded, i.e. there exist constants c1, C1 such that
c1 ≤ f ≤ C1.

Assumption 3. Market noise pdf f is differentiable and its derivative is bounded. That is,
there exists a constant L such that |f ′| ≤ L.

Assumption 4. Market noise cdf F (·) and 1− F (·) are log-concave.

At a high level, Assumptions 2 and 3 ensures that the pdf f is generally well-behaved,
namely, bounded and smooth. Assumption 4 is a popular assumption in economics that
ensures the validity of the Myerson lemma (Myerson, 1981; Kleiber and Kotz, 2003; Bagnoli
and Bergstrom, 2006). We further remark that these assumptions are mild and are satis-
fied by commonly used distributions such as truncated Gaussian distribution and uniform
distribution (Golrezaei et al., 2019).

We are now ready to state our result. If we set poly(logK) = C7 + C6H log2K in

Algorithm 4, where constant C6 is determined in Lemma 15 and constant C7 = B8H
3
2 logK

with constant B8 determined in Lemma 37, then we have Theorem 5.

Theorem 5. Under Assumption 1, Assumption 2 and Assumption 3, for any fixed failure
probability δ ∈ (0, 1), with probability at least 1−δ, Algorithm 3 achieves at most Õ(

√
H5K)

revenue regret, where Õ(·) hides only absolute constants and logarithmic terms.

See Appendix A for a detailed proof.

As we discussed previously, when H = 1, our result cannot be compared to existing
works that focus on the stochastic bandit setting due to our need to explore the action
space Υ (see Broder and Rusmevichientong (2012); Drutsa (2020, 2017); Golrezaei et al.
(2019) for works that achieves Õ(1) revenue regret in the stochastic bandit setting). The
closest work we are aware of is Cesa-Bianchi et al. (2014), which obtains a similar Õ(

√
K)

regret in the adversarial multi-armed bandit setting, matched by our bounds.

4. Unknown Market Noise Distribution

We now discuss an algorithm for when the unknown market noise distribution setting. The
procedure estimates both market noise and best reserve prices simultaneously by simulating
the outcome of executing πrand. Crucially, we achieve Õ(

√
K) revenue regret, improving

upon prior results with only mild additional assumptions on the covering number of the
distribution function hypothesis class.

4.1 CLUB Algorithm When F (·) is Unknown

We begin by introducing the counterpart to Algorithm 2 and Algorithm 5, where the only
change is in the optimization subroutine called in line 3.

10
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Algorithm 5 Buffer Period with Unknown F (·)
1: Receives buffer start buffer.s(k̃ + 1) = k and end buffer.e(k̃ + 1) = k + 3 log k

log(1/γ) .

2: Do nothing for all episodes buffer.s(k̃ + 1) ≤ k < buffer.e(k̃ + 1), i.e. do nothing
during the buffer period before the end.

3: At the end of the buffer period, update policy estimate πk̃+1 and Q-function estimate

Q̂
πk̃+1

h (·, ·) using Algorithm 8, and then increment buffer period counter k̃ ← k̃ + 1.

We then discuss Algorithm 6, a close variant of Algorithm 3, whose biggest change
lies in the update schedule in line 4. Algorithm 3 maintains only an accurate estimate of
the underlying MDP, achieved with a low switching cost style update schedule. On the
other hand, Algorithm 6 needs accurate estimates of both the MDP and the market noise
distribution F (·). We force additional updates whenever k is a power of 2, also ensuring
that F̂ (·) is close to F (·). As the number of updates remains in O(logK), the extraneous
updates do not affect the regret asymptotically.

Algorithm 6 Contextual-LSVI-UCB-Buffer (CLUB) with Unknown F

1: Initialize policy estimate π0, buffer period counter k̃ = 0, buffer period starting points
buffer.s(0) = 1, and buffer period end points buffer.e(0) = 1.

2: for episodes k = 1, . . . ,K do
3: Execute mixture policy 1

HK ◦ πrand + (1 − 1
HK ) ◦ πk̃, collecting outcomes qτih and

updating covariance matrices Λk
h ←

∑k
τ=1 ϕ(x

τ
h, υ

τ
h)ϕ(x

τ
h, υ

τ
h)

T + I for all h ∈ [H].

4: If there exists h ∈ [H] such that (Λ
buffer.e(k̃)
h )−1 ⪰ 2(Λk

h)
−1 or log2(k) is an inte-

ger, schedule a new buffer period starting at buffer.s(k̃ + 1) = k and ending at
buffer.e(k̃ + 1) = k + 3 log k

log(1/γ) using Algorithm 5.
5: end for

Similar to Section 3, these techniques, namely the buffer periods and the update sched-
ule, ensure that the impatient bidders are sufficiently truthful. However, for estimating
F (·) and θih, as we do not know F (·), the optimization problem in eq. (2) no longer applies.
Fortunately, we know that whenever πrand is executed, assuming the bidders are truthful,
Pr(qτi = 1) = 1

3N (2 − ⟨ϕ(xτh, υτh), θ⟩) conditioned on xτh, υ
τ
h, as the bidder i and the reserve

price ρτih are drawn uniformly at random. Leveraging this observation, we quickly realize
that we can simply use the outcomes from when πrand is executed to estimate the bidders’
rewards, even when F (·) is unknown.

A straightforward method to incorporate the previous observation would be to simply
perform pure exploration rounds with πrand, similar to technique in Golrezaei et al. (2019).
Yet doing so incurs Õ(K2/3) revenue regret, as πrand does not set the reserve prices opti-
mally and we are not exploring and exploiting simultaneously. To balance exploration and
exploitation, we propose still exploiting with the mixture policy, while exploring with a new
technique that we dub “simulation”.

Here we introduce a new random variable q̃τih = 1(bτih ≥ ρ̃τih), where for each h, τ we
select one i ∈ [N ] uniformly at random and then draw ρ̃τih from Unif([0, 3]). For all j ̸= i
we set ρ̃τih to ∞. At a high level, we are using q̃τih to “simulate” executing πrand: holding xτh

11
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Algorithm 7 Simulation

1: for h = 1, . . . ,H and τ = 1, . . . ,K do
2: Generate virtual reserve prices ρ̃τih by selecting one bidder i ∈ [N ] uniformly at

random. Let ρ̃τih ∼ Unif([0, 3]) and set all other reserve prices to infinity, i.e. ρ̃τjh =∞
for all j ̸= i.

3: Use real bidding data bτih simulated reserve prices ρ̃τih to simulate outcome q̃τih for all
i ∈ [N ], namely set bτih = 1(bτih ≥ ρ̃τih) for all i ∈ [N ].

4: end for
5: Return the simulated outcomes {q̃kih}.

and υτh constant, what would be the outcome if we were to act according to πrand instead?
As we do not need to execute πrand, revenue regret can be decreased. Furthermore, q̃τih still
enjoys the same resilience towards untruthful reporting that qτih does. Indeed, when the
bidder overbid or underbid by a small amount, the number of times q̃τih changes could be
controlled effectively.

More technically, Algorithm 7 is critical for two reasons. First, the difference between
F̂ (·) and F (·) decays at a rate of O(1/

√
K). If we simply use Equation (2), only replacing

F (·) with F̂ (·), the estimation error is roughly on the order of Õ(
√
buffer.e(k̃ + 1)) which

precludes achieving Õ(
√
K) regret. Second, replacing q̃τih with qτih does not work, as we need

to de-bias the estimator when we switch from F (·) to the uniform distribution induced by
πrand. Even when the bidders report truthfully, we cannot guarantee that Pr(qτih = 1 |xτh, υτh)
could be related to 1

3N (1 + ⟨ϕ(xτh, υτh), θih⟩). Consequently, it would be hard to ensure that

when all bidders are truthful, the estimator θ̂τih would converge to θih.

With the help of the simulation technique, detailed in Algorithm 7, we summarize how
we simultaneously estimate θih and F (·) in the form of eq. (3)

θ̂ih = argmin
∥θ∥≤2

√
d

buffer.e(k̃+1)∑
τ=1

(3Nq̃τih − (1 + ⟨ϕ(xτh, υτh), θ⟩))2,

F̂ (z) =
1

Nbuffer.e(k̃ + 1)H

N∑
i=1

buffer.e(k̃+1)∑
τ=1

H∑
h=1

1(biτh − 1− ⟨ϕτ
h, θ̂ih⟩ ≤ z).

(3)

We note that we are simply using a histogram to estimate F (·) and, as we have successfully
decoupled estimation error of F (·) from estimation error θih, using histogram is sufficient
for achieving Õ(

√
K) revenue regret.

Finally, we discuss Algorithm 8, whose key difference with Algorithm 4 lies in the added
uncertainty due to F̂ and the inclusion of the simulation subroutine.

4.2 Regret Bound of CLUB Algorithm When F (·) is Unknown

We now argue that Algorithm 6 achieves Õ(
√
K) regret. We begin with a slightly detour,

making a basic assumption on the hypothesis class for F (·).

Assumption 6. The market noise distribution F (·) belongs to a distribution family F .

12
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Algorithm 8 Estimation of Q̂
πk̃+1

h (·, ·) with Unknown F (·)
1: Collect simulation outcome q̃ using Algorithm 7.
2: Estimate θ̂ih, F̂ (·) using eq. (3).
3: Estimate µ̂ih(·, ·)← ⟨ϕ(·, ·), θ̂ih⟩.
4: Set reserve price ρ̂ih(·, ·) = argmaxy y(1− F̂ (y − 1− µ̂(·, ·))).
5: Estimate revenue R̂h(·, ·)← E[max{b̃−h (·, ·), ρ̂

+
h (·, ·)}1(b̃

+
h (·, ·) ≥ ρ̂+h (·, ·))].

6: for h = H, . . . , 1 do

7: Λh ←
∑buffer.e(k̃+1)

τ=1 ϕ(xτh, υ
τ
h)ϕ(x

τ
h, υ

τ
h)

T + λI. ▷ We set λ = 1 in this paper.

8: ωh ← Λ−1
h

∑buffer.e(k̃+1)
τ=1 ϕ(xτh, υ

τ
h)[maxa Q̂h+1(x

τ
h+1, a)].

9: Q̂
πk̃+1

h (·, ·)← min{ωT
h ϕ(·, ·) + R̂(·, ·) + poly1(logK)∥ϕ(·, ·)∥Λ−1

h
+ poly2(logK)√

buffer.e(k̃+1)
, 3H}

10: πυ
k̃+1,h

(·)← argmaxv Q̂
πk̃+1

h (·, v).
11: πρi

k̃+1,h
(·)← ρ̂ih(·, πa

k̃+1,h
(·)).

12: end for
13: Return {Q̂

πk̃+1

h (·, ·)}Hh=1 and {πk̃+1,h(·)}
H
h=1.

We further let Nϵ(F) be the ϵ-covering number of F with respect to the metric that
dist(F,G) = supx |F (x) − G(x)|. We now have our main theorem when noise distribution
is unknown. If we let poly1(logK) = C15 + C13H log2K and poly2(logK) = C14H

2 log4K

in Algorithm 8, where C15 = D7H
3
2 and the constant D7 is determined in Lemma 45,

constants C13 and C14 are determined in Lemma 23, we would attain the following regret
guarantee.

Theorem 7. Under Assumptions 1, 2, 3, and 6, when F (·) is unknown, for any fixed failure

probability δ ∈ (0, 1), Algorithm 6 achieves at most Õ(H3
√
K+H2.5

√
K logN1/K(F)) regret

with probability at least 1 − δ in the worst case, where Õ(·) hides only absolute constants
and logarithmic terms.

See Appendix B for a detailed proof.

We highlight that when N1/K(F) is polynomial in 1/K, an implicit assumption found in
Kong et al. (2021); Foster et al. (2021); Jin et al. (2021a), Theorem 7 shows that Algorithm 6
achieves Õ(

√
K) regret, improving over revenue regret guarantees found in Amin et al.

(2014); Golrezaei et al. (2019) with only mild additional assumptions on the nonparametric
hypothesis class F . Our result is able to break the well-known Ω(K2/3) revenue lower bound
in Kleinberg and Leighton (2003) with the help of Assumptions 2 and 3. Nevertheless, as we
argued previously, these assumptions are satisfied by widely-used parametric distribution
families such as normal distribution and truncated normal distribution (Golrezaei et al.,
2019), hence our result still remains broadly applicable.

5. Proof Sketch

Before sketching out the proof techniques, we take a slight detour and discuss the how
revenue regret could be decomposed. Recall that πk̃ denotes the optimistic policy estimate
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maintained from episode buffer.e(k̃)+1 to buffer.s(k̃+1), namely the estimate from the
end of the k̃-th buffer period to the start of the (k̃ + 1)-th. We also recall that π∗ is the
optimal item choice and pricing policy when the seller knows the bidders’ reward functions,
the transition kernel P, and the market noise distribution F (·) beforehand and we use V π∗

to denote the revenue’s V-function for the optimal policy π∗.

We now introduce several new notations that will be used in the rest of the section.
We use πk to denote the policy executed at episode k. Intuitively, the policy πk consists
of some steps in which the corresponding πk̃ is executed and some steps where πrand is

executed. Let 1(k ∈ buffer) indicate the event that there exists some integer k̃ such that
k ∈ [buffer.s(k̃), buffer.e(k̃)], i.e. the episode k is within a buffer period. To better
highlight the effect of untruthfulness, we let Ṽ denote the optimistic V-function estimate if
all bidders were to report truthfully.

5.1 Regret Decomposition

The regret can be decomposed to the following five parts.

1. ∆1 =
∑K

k=1[V
π∗
1 (x1) − Ṽ πk

1 (x1)]1(πk = πk̃ and k ̸∈ buffer). The term ∆1 is due
to the seller not knowing the bidders’ reward functions and the underlying transition
dynamics of the MDP. The term is nonzero even if we were to assume that all bidders
report truthfully due to the uncertainty of the environment.

2. ∆2 =
∑K

k=1[V
π∗
1 (x1) − V πk

1 (x1)]1(k ∈ buffer). The second term comes from the
buffer periods, which causes suboptimality as we intentionally delayed the policy up-
date in order to further punish untruthfulness. While conducive to more truthful
reports, delayed update schedule induces regret as the policy estimate is stale during
these buffer periods.

3. ∆3 =
∑K

k=1[V
π∗
1 (x1) − V πk

1 (x1)]1(existsh such that πk,h = πrand and k ̸∈ buffer).
The third term ∆3 is caused by πrand, as it sets reserve prices and chooses items
entirely randomly.

4. ∆4 =
∑K

k=1[V
π∗
1 (x1)− V πk

1 (x1)]1(k ∈ L and k ̸∈ buffer). We only provide intuition
behind the term L and defer its precise mathematical definition to eq. (4) for when
F (·) is known and eq. (5) for when F (·) is not. The term L is a collection of episode
indices where the bidders’ untruthful bids altered the outcome of the multi-phase
auction, through either qih or q̃ih. At a high level, while we could measure the revenue
suboptimality of the selected reserve prices if the bidders are truthful, the seller’s
revenue could be harmed arbitrarily by bidders who underbid/overbid so much that
the auction’s outcome itself is altered. The term ∆4 then measures the effect of the
changed outcomes due to untruthful bidding.

5. ∆5 =
∑K

k=1[Ṽ
πk
1 (x1)−V πk

1 (x1)]1(πk = πk̃ and k ̸∈ buffer). Compared to ∆4, which
measures the effect of changed outcomes due to untruthfulness, ∆5 measures the effect
of changed bids due to untruthfulness. Intuitively, a bidder who overbids/underbids
a small amount would not affect the auction’s outcome, but could change the amount
the seller charges slightly. We measure the effect with ∆5.
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With easy algebra calculation, we have the following proposition.

Proposition 8. With ∆1 to ∆5 defined as above, it holds that Regret ≤ ∆1 +∆2 +∆3 +
∆4 +∆5.

Proof Since our benchmark is the maximized revenue when everything is common knowl-
edge, it holds that V π∗

1 (x1) ≥ V πk
1 (x1) at any time. It is because that V π∗

is no less than the
revenue achieved when existing hidden information with any policy due to its optimality.

Since ∆1 + ∆5 =
∑K

k=1[V
π∗
1 (x1) − V πk

1 (x1)]1(πk = πk̃ and k ̸∈ buffer) and 1(k ∈
buffer)+1(πk = πk̃ and k ̸∈ buffer)+1(existsh such that πk,h = πrand and k ̸∈ buffer)+
1(k ∈ L and k ̸∈ buffer) ≥ 1, it holds that

Regret =

K∑
k=1

V π∗
1 (x1)− V πk

1 (x1) ≤ ∆1 +∆2 +∆3 +∆4 +∆5,

which ends the proof.

5.2 Proof Techniques

With the sources of revenue regret sketched out, we summarize the high level intuition
behind our proof, which mainly comprises of the following steps.

Step 1: Limit the magnitude of untruthful reporting. As we discussed in Section 3,
reducing the frequency at which we update the policies and including the buffer periods
force bidders to wait before they can gain from untruthful reporting. When the bidders are
impatient, the amount they can gain from untruthful reports is then upper bounded. With
the help of πrand, we are also always punishing the bidders for untruthful reports. Combining
the two halves, we can control the total amount by which bidders overbid or underbid, as
overbidding or underbidding too much would decrease their utilities. Moreover, by directly
controlling the “amount” of overbidding and underbidding, we are able to upper bound
∆5, the part of the revenue regret due to untruthfulness. It corresponds to Lemma 10 in
Appendix A.

Step 2: Control the number of times qkih change due to untruthfulness. Since
we are using qkih, as opposed to bkih, to learn the bidder’s reward functions, to ensure the
estimates’ accuracy, we only need to show that the qkih’s are close to their values when
the bidders are truthful. As qkih’s are outcomes of an auction, bidders need to overbid or
underbid by a significant amount in order to alter qkih. Combined with the previous step,
we can show limit the number of times qkih is altered due to untruthful behavior. With the
number of changes controlled, we can also control ∆4. It corresponds to Lemma 11 and
Lemma 19.

Step 3: Prove the estimates of personal parameters and noise distribution are
good. Having shown that the bidders provide us with sufficiently truthful reports, we con-
nect our work to RL with generalized linear function approximation in Wang et al. (2020)
to show θ̂ih is sufficiently accurate and apply the Dvoretzky–Kiefer–Wolfowitz inequality

15



Ai, Lyu, Wang, Yang, and Jordan

to show F̂ (·) is sufficiently accurate (Dvoretzky et al., 1956). When the market noise dis-
tribution is known, it corresponds to Lemma 13 and Lemma 14. When the market noise
distribution is unknown, it then corresponds to Lemma 20, Lemma 21, and Lemma 22.

Step 4: Prove R̂(·, ·) ≈ R(·, ·) and extend LSVI-UCB to non-linear reward func-
tion. By applying Taylor expansion to the revenue function Rh, we relate the accuracy
of R̂(·, ·) to accuracy of θ̂ih, which is shown to be accurate in the previous step. We can
then show our policy estimate πk̃ is approximately optimal with standard LSVI-UCB anal-
ysis. Steps 3 and 4 then combine to control ∆1. It corresponds to Lemma 15, Lemma 16,
Lemma 23, and Lemma 24.

Step 5: Limit the effects of πrand and buffer periods. We finally control the revenue
regret due to πrand and buffer periods. A key observation is that the number of times in
which πrand is executed and the length of the buffer periods are all in Õ(1) and hence do not
harm our regret asymptotically. Consequently, terms ∆2 and ∆3 are controlled effectively.
As for πrand, it corresponds to Lemma 12 and as for buffer periods, it corresponds to
Lemma 9 and Lemma 18.

6. Conclusion and Discussion

In this paper, we propose a multi-phase second-price auction mechanism based on rein-
forcement learning. We highlight that when market noise distribution is unknown, our
algorithm achieves Õ(H3

√
K) regret, improving upon the Õ(K2/3) guarantees in Golrezaei

et al. (2019); Amin et al. (2014), using a new method to deal with unknown distribution.
Our work is also the first to introduce the notion of “buffer periods”, a concept crucial to
bringing existing techniques in the bandit setting to the more general MDP setting.

Questions raise themselves for future explorations. Is it possible to further generalize
our results to RL with general function approximation under bounded Bellman Eluder
dimensions (Jin et al., 2021a)? Can we optimize the dependence on horizon H and feature
dimension d? We leave these interesting questions as potential next steps.
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A. Omitted Proof in Section 3

In this section, we show some useful lemmas in order to prove theorems in Section 3.
We organize the section as follows. Firstly, we introduce lemmas to bound the effect of
untruthfully bidding. Then, we will show that we are able to estimate unknown parameters
accurately. Finally, combing them leads to bounded regret with high probability.
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A.1 Useful Lemmas for Proving Theorem 5

Now, we begin to prove our conclusions. First of all, we show the following lemma to bound
the number of buffers.

Lemma 9. Under Assumption 1 about linear MDP, it holds that the number of episodes of

buffer is not larger than 3HC2 log
2 K

log 1
γ

. Then, the number of corresponding steps is not larger

than 3H2C2 log
2 K

log 1
γ

, where C2 is a constant only depends on d and λ.

Because of the existence of buffer, the bidder will not overbid or underbid a lot in the
other episodes. Then, we have the following lemma.

Lemma 10. Apart from the buffer periods, a rational bidder won’t overbid or underbid for

more than 3H
√
2N

K
√
1−γ

, denoted by C3H
K .

Then we define L being the number of steps the bidder doesn’t bid his true value and
change the outcome of the auction. Then, it holds the following lemma with the help of
Lemma 10. We formalize the definition of L for any given i, h as follows.

L = {k : 1(vkihw > max{bk+−ih, ρ
k
ih}) ̸= 1(bkih > max{bk+−ih, ρ

k
ih})}. (4)

Lemma 11. With probability at least 1− δ, it holds that for any given i, h

L ≤ 3HC2 log
2K

log 1
γ

+ 4C1C3H + 8 log(
2NH

δ
) ≤ C4H log2K,

where C4 is a constant independent of K and H.

Now, we bound the number of steps we use πrand instead of πk̃. Especially, we regard
πrand as the policy used in the situation that happens with probability 1

KH .

Lemma 12. With probability at least 1− δ, the number of steps using πrand is smaller than
max{4, 1 + 4

3 log
1
δ}.

Now, we will show the wedge between µ̂ih(·, ·) and µih(·, ·) for any bidder i and step h.
It holds the following lemma.

Lemma 13. We use θ∗ih to denote the true parameter and θ̂ih to represent the outcome from
Equation (2) in episode buffer.e(k̃). Therefore, under Assumption 2 and Assumption 3,
for any i and h, it holds the following union bound that C5 is a constant and√

(θ̂ih − θ∗ih)
TΛbuffer.e(k̃)(θ̂ih − θ∗ih) ≤ C5

√
H logK,

with probability at least 1− δ, conditional on Good Event E .

Then, we are ready to have the bound for µ̂. It holds the following lemma:
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Lemma 14. Conditional on Good Event E , it holds that

|µ̂k
ih(·, ·)− µk

ih(·, ·)| ≤ C5

√
H logK∥ϕ(·, ·)∥

(Λ
buffer.e(k̃)
h )−1

,

where buffer.e(k̃) is the last episode using Equation (2) before episode k, similarly here-
inafter.

Now, we focus on the gap between R(·, ·) and the estimate R̂(·, ·). We are ready to show
the following lemma.

First of all, we introduce some notations. Rk
h(·, ·) =

∑N
i=1 E[max{rk−ih , αk∗

ih}1(rkih ≥
max{rk−ih , αk∗

ih})] and R̂k
h(·, ·) =

∑N
i=1 E[max{r̂k−ih , αk

ih}1(r̂kih ≥ max{r̂k−ih , αk
ih})]. In short,

R(·, ·) is the expectation of revenue if we choose the optimal reserve price αk∗
ih for every bidder

based on the knowledge of µk
ih(·, ·) and every one bids truthfully based on his valuation.

Respectively, R̂(·, ·) is the one we choose reserve price αk
ih with the estimation of µk

ih(·, ·),
i.e., µ̂k

ih(·, ·).

Lemma 15. When Lemma 14 holds, we have

|Rk
h(·, ·)− R̂k

h(·, ·)| ≤ C6H log2K∥ϕ(·, ·)∥
(Λ

buffer.e(k̃)
h )−1

,

where C6 is a constant independent of K and H.

Let’s have an example when N = 1, i.e., there is only one bidder.

Example 1. In this situation, R(·, ·) = α∗(1−F (α∗−1−µ(·, ·))) and R̂(·, ·) = α(1−F (α−
1− µ̂(·, ·))). Therefore,

|R(·, ·)− R̂(·, ·)| ≤ (6C1 + 1)C5

√
H logK∥ϕ(·, ·)∥Λ−1 ,

which is consistent with Lemma 15.

Now, we focus on the regret not in buffer caused by Algorithm 4, denoted by ∆1. In
order to facilitate the understanding, we rewrite the definition of ∆1 explicitly as follows.

∆1 =
K∑
τ=1

[V π∗
1 (xk1)− Ṽ

πk̃
1 (xk1)]1(k ̸∈ buffer).

Let’s revisit our thought of bounding regret. We use empirical data to estimate unknown
parameters and then we assume that bidders will bid truthfully to construct the estimation
of R-function and Q-function. Then, we chase down the greedy policy. Therefore, when
we take expectation operator, we assume truthful bidding. Since ∆5 is easy to bound, we
focus on how to bound ∆1. With a little abuse of notation, we will use V (·) to replace Ṽ (·)
from now on.

Then, we have the following lemma.

Lemma 16. Under Assumption 1, Assumption 2 and Assumption 3, if we set poly(logK) =

(C7 + C6H log2K)∥ϕ(·, ·)∥
(Λ

buffer.e(k̃)
h )−1

in Algorithm 4, where C7 = B8H
3
2 logK and B8 is

determined in Lemma 37, it holds that with probability at least 1− 2δ,

∆1 ≤ C8

√
H5K log5K,

where C8 is a constant independent of H and K.

18



RL in Multi-Phase Second-Price Auction Design

A.2 Proof of Theorem 5

Let’s make decomposition of the regret at first. It holds that

Regret ≤ ∆1 +∆2 +∆3 +∆4 +∆5.

∆1 is defined in Lemma 16 and with probability at least 1− 2δ, ∆1 ≤ C8

√
H5K log5K.

∆2 comes from the use of buffer. With Lemma 9, it holds that ∆2 ≤ 3H 3HC2 log
2 K

log 1
γ

.

∆3 comes from the use of policy πrand. By applying Lemma 12, it holds that ∆3 ≤
3Hmax{4, 1 + 4

3 log
1
δ} with probability at least 1− δ.

∆4 comes from the consequence from the existence of L. Due to Lemma 11, we have
∆4 ≤ NH(4C1C3H + 8 log(2NH

δ ))3H = 3NH2(4C1C3H + 8 log(2NH
δ )), with probability at

least 1− δ. As we have already considered loss from buffer in ∆2, there is no need for us to
consider it in ∆4.

∆5 comes from the difference between the expectation of revenue when buyers bid truth-
fully and the actual expectation of revenue when buyers overbid or underbid but it does
not change the outcome. Since we already consider the loss from buffer, the size of overbid
or underbid we should think about is less than C3H

K thanks to Lemma 10. Therefore, the
difference between the expectation of revenue when buyers bid truthfully and the actual
expectation of revenue when buyers overbid or underbid but it does not change the outcome
is less than C3H

K each step. So, it holds that ∆5 ≤ C3H
2.

When estimating R̂(·, ·), we have at most probability δ not satisfying the inequality in
Lemma 13.

Consequently, we set δ = p
5 , and it ends our proof.

B. Omitted Proof in Section 4

Comparing to Appendix A, this section introduce a well-performed estimator to estimate
underlying distribution. With the help of it, we prove corresponding the theorems when
the market noise distribution is unknown.

B.1 Useful Lemmas for Proving Theorem 7

In order to estimate noise distribution, we have the following lemma (Dvoretzky et al.,
1956) to bound the gap between true distribution and empirical distribution. We assume
that F̂ (·) and f̂(·) inherit all the properties of F (·) and f(·), because we can easily use
some smooth kernels1 to achieve this goal. However, in order to make the paper easy to
understand, we do not explicitly write down the choice of smooth kernel.

Lemma 17. Given t ∈ N, let m1,m2, . . . ,mt be real-valued independent and identically
distributed random variables with cumulative distribution function F (·). Let F̂t(·) denote
the associated empirical distribution function defined by F̂t(x) = 1

t

∑t
i=1 1{mi≤x} where

x ∈ R. Then with probability 1− δ, it holds

sup
x
|F̂t(x)− F (x)| ≤

√
1

2
log

2

δ
t−

1
2 .

1. It may introduce a constant 2 when describing the distance of two distributions. However, it doesn’t
matter as we consider order only.
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Now, similar to the methodology in Appendix A, we state the following lemmas paral-
lelly.

Lemma 18. Under Assumption 1 about linear MDP, it holds that the number of episodes
of buffer is not larger than C9H log2K. Then, the number of corresponding steps is not
larger than C9H

2 log2K, where C9 is a constant that only depends on d and λ.

Recall that when market noise distribution is unknown, we implement Algorithm 7 to
generate q̃ and we use q̃ to estimate θ instead of q. Therefore, L there considers simulation
outcome q̃ rather than real outcome q. We formalize the definition of L there as follows and
we use ρ̃ to represent reserve price in Algorithm 7.

L = {k : 1(vkih > max{bk+−ih, ρ̃
k
ih}) ̸= 1(bkih > max{bk+−ih, ρ̃

k
ih})}.

L = {k : 1(vkih > max{bk+−ih, ρ̃
k
ih}) ̸= 1(bkih > max{bk+−ih, ρ̃

k
ih})}. (5)

Lemma 19. With probability at least 1− δ, it holds that for any given i, h

L ≤ C9H log2K + 4C1C3H + 8 log(
2NH

δ
) ≤ C10H log2K,

where C3 is defined in Lemma 10 and C10 is a constant independent of K and H.

Lemma 20. We use θ∗ih to denote the true parameter and θ̂ih to represent the outcome from
Equation (3) in episode buffer.e(k̃). Therefore, under Assumption 2 and Assumption 3,
for any i and h, it holds the following union bound that C11 is a constant and√

(θ̂ih − θ∗ih)
TΛbuffer.e(k̃)(θ̂ih − θ∗ih) ≤ C11

√
H logK,

with probability at least 1− δ, conditional on Good Event E .

As same as Lemma 14, we have the following lemma.

Lemma 21. Conditional on Good Event E , it holds that

|µ̂k
ih(·, ·)− µk

ih(·, ·)| ≤ C11

√
H logK∥ϕ(·, ·)∥

(Λ
buffer.e(k̃)
h )−1

.

Now, we introduce a lemma bounding the gap between the noise distribution F (·) and
F̂ (·).

Lemma 22. Conditional on Good Event E , it holds with probability at least 1− δ that for
any x in episode buffer.e(k̃)

|F (x)− F̂ (x)| ≤
√

1

2
log

2K

δ
(NHbuffer.e(k̃))

− 1
2 +

C1C3H

K
+

C9H log2K

buffer.e(k̃)

+ C1C11

√
H logK∥ϕ(xτh, υτh)∥(Λbuffer.e(k̃)

h )−1

≤C12
H log2K√
buffer.e(k̃)

,

where C12 is a constant.
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Now, we begin to bound the wedge of R(·, ·) and R̂(·, ·) corresponding to F̂ (·). It holds
the following lemma.

Lemma 23. Conditional on Good Event E , we have

|Rk
h(·, ·)− R̂k

h(·, ·)| ≤ C13H log2K∥ϕ(·, ·)∥
(Λ

buffer.e(k̃)
h )−1

+ C14
H2 log4K√
buffer.e(k̃)

,

where C13 and C14 are constants independent of K and H.

We define ∆1 as the one in Lemma 16 of Appendix A.

Lemma 24. Under Assumption 1, Assumption 2 Assumption 3 and Assumption 6, if we
set poly1(logK) = C15 + C13H log2K and poly2(logK) = C14H

2 log4K in Algorithm 8,

where C15 = D7H
3
2 and D7 is determined in Lemma 45, it holds that with probability at

least 1− 2δ,
∆1 ≲ Õ(H3

√
K).

B.2 Proof of Theorem 7

It is similar to proof of Theorem 5. The only difference comes from Lemma 22. The
probability of Bad Event E c is now less than 6δ. Then, we set p = δ

6 and it ends the
proof.

C. Auxiliary Lemmas and Proofs in Appendix A

In this section, we prove the lemmas mentioned in Appendix A detailedly. It is organized
by the order of lemmas.

C.1 Proof of Lemma 9

First of all, we have the following lemmas.

Lemma 25 (Lemma 2, (Gao et al., 2021)). Assume m ≤ n, A =
∑m

τ=1 ϕτϕ
T
τ + λI. B =∑n

τ=1 ϕτϕ
T
τ + λI, where ϕτ is abridge for ϕ(xτ , υτ ), similarly hereinafter. Then if A−1 ̸≺

2B−1, we have

log detB ≥ log detA+ log 2.

Lemma 26 (Lemma 1, (Gao et al., 2021)). Since ∥ϕτ∥ ≤ 1. Let A =
∑K

τ=1 ϕτϕ
T
τ + λI,

then we have
log detA ≤ d log d+ d log(K + λ) ≤ K1 logK.

Therefore, for 2(Λbuffer.s(k̃+1))
−1
̸≻ (Λbuffer.e(k̃))−1 and buffer.e(k̃+1) ≥ buffer.s(k̃+

1), it holds that 2(Λbuffer.e(k̃+1))−1 ̸≻ (Λbuffer.e(k̃))−1. Therefore, detΛbuffer.e(k̃+1) ≥
2 detΛbuffer.e(k̃). Then, using Lemma 25, we know that for any h and k, it holds log detΛk

h ≤
K1 logK. We have log detΛ0

h = d log λ. Combining Lemma 25, we have that the number of

episodes of buffer for any h is not larger than 3 logK

log 1
γ

K1 logK−d log λ
log 2 . Then, there is a constant
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C2 satisfying K1 logK − d log λ ≤ C2 log 2 logK. Therefore, the total episodes in buffer is

not larger than 3HC2 log
2 K

log 1
γ

. For the number of total steps, it is obvious that it is smaller

than H times the number of episodes. Then, it ends the proof.

C.2 Proof of Lemma 10

Myerson (1981) shows that the optimal strategy for one-round second-price auction is to

bid truthfully. Therefore, if a bidder overbids or underbids for more than 3H
√
2N

K
√
1−γ

, his loss

holds that

Loss ≥ 1

NHK

β

2K

1

3

β

K
=

3H

K3(1− γ)
,

where β = 3H
√
2N√

1−γ
.

The inequality holds since that with probability 1
KHN , the policy will be πrand and the

bidder is selected, and the total loss is higher than the loss with policy πrand. With a
uniform reserve price, the probability that loss happens is β

3K . Then, average loss is β
2K .

Since the existence of buffer, the overbid or underbid can only make an influence on policy
t = 3 logK

log 1
γ

episodes later. Because of the existence of discount rate, an upper bound of

revenue for each buyer after t episodes is γt

1−γ 3H = 3H
K3(1−γ)

.

Therefore, with the assumption that buyers are all rational, it finishes the proof.

C.3 Proof of Lemma 11

For convenience, similar to Golrezaei et al. (2019), we define

Li = {t : t ∈ [0,K] and 1(vti ≥ mt
i) ̸= 1(bti ≥ mt

i)},

for each buyer i.

We define oti = (bti− vti)+ and sti = (vti − bti)+, where t = 1, . . . ,K given h. When we can
determine the subscript through the context, we omit the subscript h for convenience.

Then we define qti which is a binary variable. It equals one if buyer i wins and zero
if loses. Therefore, we have Si = {t : t ∈ [1,K], qti = 0 and sti ≥ α} and Oi = {t : qti =
1 and oti ≥ α}. As a result, Li = Ls

i

⋃
Lo
i , where Ls

i = {t : 1(vti ≥ rti) = 1,1(bti ≥ rti) = 0}
and Lo

i = {t : 1(vti ≥ rti) = 0,1(bti ≥ rti) = 1}. Finally, we have Sc
i = {t : qti = 1 or sti ≤ α}.

So, |Ls
i | = |Si

⋂
Ls
i |+ |Sc

i

⋂
Ls
i |.

To bound |(Si
⋂
Ls
i )
⋃
(Oi

⋂
Lo
i )|: using Lemma 9 and Lemma 10, we have that if we set

α = C3
H
K , it is bounded by 3HC2 log

2 K

log 1
γ

.

To bound |Sc
i

⋂
Ls
i |: it means that underbid changes the outcome and the level of

underbid is smaller than α. Since |f | ≤ C1, it holds for origin x:

Pr(t ∈ Sc
i

⋂
Ls
i |Ft) ≤

∫ x+α

x
f(z)dz ≤ C1α.

Let’s define ξt = 1(t ∈ Sc
i

⋂
Ls
i ) while ωt = Pr(t ∈ Sc

i

⋂
Ls
i | Ft). Then |Sc

i

⋂
Ls
i | =

∑K
t=1 ξt

and E(ξt − ωt | Ft) = 0.
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Using Azuma-Hoeffding inequality (Hoeffding, 1994), it holds that

Pr(|Sc
i

⋂
Ls
i | ≥

1 + ι

1− ϵ

K∑
1

ωt) ≤ exp(−ϵι
K∑
1

ωt).

Let A =
∑K

1 ωt ≤ KC1α, ϵ =
1
2 and ι = 2

A log(2NH
δ ), we have

|Sc
i

⋂
Ls
i | ≤ 2(1 + ι)A ≤ 2KC1α+ 4 log(

2NH

δ
),

with probability at least 1− δ
2NH .

Similarly, we bound |Oc
i

⋂
Lo
i | with the same bound that

|Oc
i

⋂
Lo
i | ≤ 2KC1α+ 4 log(

2NH

δ
),

with probability at least 1− δ
2NH .

Then, we set α = C3H
K and combine the items all to obtain

|Li| ≤
3HC2 log

2K

log 1
γ

+ 4C1C3H + 8 log(
2NH

δ
),

with probability at least 1− δ
NH .

With the same methodology, we obtain the union bound for any given i and h with
probability at least 1− δ that

L ≤ 3HC2 log
2K

log 1
γ

+ 4C1C3H + 8 log(
2NH

δ
),

and it finishes the proof.

C.4 Proof of Lemma 12

We use random variables X1, . . . , XKH to represent whether πrand is used. If we choose
policy πrand, then X = 1, or X = 0 otherwise.

Using Bernstein inequalities (Bernstein, 1924), it holds that

Pr(

KH∑
i=1

Xi −KH
1

KH
≥ t) ≤ exp{ −t2/2

(1− 1/KH) + t/3
},

since X − 1
KH has mean zero and var(X) = 1

KH (1− 1
KH ).

Therefore, set t = max{3, 43 log
1
δ}, the right side is smaller than δ and it finishes the

proof.
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C.5 Proof of Lemma 13

First of all, we omit subscripts i and h for convenience and we will get the union bound in
the end.

Then, we introduce some notations. We use q̃τ to represent the outcome that every
bidder bids truthfully and q̂τ to represent the outcome with real bidding. Then θ̂ and θ̃
correspond to {q̂τ} and {q̃τ}.

Now, we focus on buyer i and step h, so we omit subscripts i and h from now on. We
have the following lemma at first:

Lemma 27. Under Equation (2), it holds that

buffer.e(k̃)∑
τ=1

(q̃τ − 1 + F (mτ − 1− ⟨ϕτ , θ̂⟩))2 ≤
buffer.e(k̃)∑

τ=1

(q̃τ − 1 + F (mτ − 1− ⟨ϕτ , θ
∗⟩))2 + 6L,

where L ≤ C4H log2K due to Lemma 11.

C.5.1 Proof of Lemma 27

Since there are at most L steps that overbid or underbid changes the outcome, q̂τ and q̃τ
differ in at most L different points. Since q̃τ and q̂τ belong to {0, 1}, we have

buffer.e(k̃)∑
τ=1

(q̂τ − 1)2 ≤
buffer.e(k̃)∑

τ=1

(q̃τ − 1)2 + L.

Then, since F (·) ∈ [0, 1], it holds that

−2
∑
τ

(̂1− qτ )F (mτ − 1− ⟨ϕτ , θ⟩) ≤ −2
∑
τ

(̃1− qτ )F (mτ − 1− ⟨ϕτ , θ⟩) + 2L.

for any θ.
Therefore, it holds that∑

τ

(q̃τ − 1 + F (mτ − 1− ⟨ϕτ , θ⟩))2 ≤
∑
τ

(q̂τ − 1 + F (mτ − 1− ⟨ϕτ , θ⟩))2 + 3L, (6)

for any θ.
Finally, with the optimality of θ̂ and θ̃, it holds that∑

τ

(q̃τ − 1 + F (mτ − 1− ⟨ϕτ , θ̂⟩))2

≤
∑
τ

(q̂τ − 1 + F (mτ − 1− ⟨ϕτ , θ̂⟩))2 + 3L

≤
∑
τ

(q̂τ − 1 + F (mτ − 1− ⟨ϕτ , θ̃⟩))2 + 3L

≤
∑
τ

(q̃τ − 1 + F (mτ − 1− ⟨ϕτ , θ̃⟩))2 + 6L

≤
∑
τ

(q̃τ − 1 + F (mτ − 1− ⟨ϕτ , θ
∗⟩))2 + 6L.
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The first and third inequalities holds due to Ineq. (6). The second and last inequalities hold
because of the optimality of θ̂ and θ̃. Then, it finishes the proof.

Then we use fmτ (⟨ϕτ , θ⟩) to represent F (mτ − 1− ⟨ϕτ , θ⟩) in shorthand.
Therefore, with Lemma 27, we have∑

τ

[fmτ (⟨ϕτ , θ̂⟩)− fmτ (⟨ϕτ , θ
∗⟩)] ≤ 2|

∑
τ

ξτ (fmτ (⟨ϕτ , θ̂⟩)− fmτ (⟨ϕτ , θ
∗⟩))|+ 6L,

where ξτ = (1− q̃τ )− fmτ (⟨ϕτ , θ
∗⟩). The inequality holds because of simple rearrangement.

Then, we have

fmτ (⟨ϕτ , θ̂⟩)− fmτ (⟨ϕτ , θ
∗⟩) =

∫ ⟨ϕτ ,θ̂⟩

⟨ϕτ ,θ∗⟩
f ′
mτ

(s)ds

= ⟨ϕτ , θ̂ − θ∗⟩
∫ 1

0
f ′
mτ

(⟨ϕτ , sθ̂ + (1− s)θ∗⟩)ds

= ⟨ϕτ , θ̂ − θ∗⟩Dτ ,

where Dτ =
∫ 1
0 f ′

mτ
(⟨ϕτ , sθ̂ + (1− s)θ∗⟩)ds.

So, it holds that∑
τ

D2
τ (⟨ϕτ , θ̂ − θ∗⟩)2 ≤ 2|

∑
τ

ξτDτ ⟨ϕτ , θ̂ − θ∗⟩|+ 6L.

Since ∥θ∥ ≤
√
d, we use Vϵ which is a set of ball with radius ϵ to cover B(0,

√
d)×B(0,

√
d).

Then, the cardinality of Vϵ is smaller than B1(
√
d
ϵ )2d = B2

ϵ2d
, where B1 and B2 are constants

only depending on dimension d. Thanks to Assumption 2 and Assumption 3, we have
|f ′′| ≤ L and |Dτ | ≤ C1.

Therefore, for any (θ̂, θ∗), there exists (θ, θ′), which is the center of a ball in Vϵ, so that
∥(θ̂, θ∗)− (θ, θ′)∥ ≤ ϵ. In this way, it holds that

|⟨ϕτ , Dτ (θ, θ
′)(θ − θ′)−Dτ (θ̂, θ

∗)(θ̂ − θ∗)⟩|

≤2
√
d|Dτ (θ, θ

′)−Dτ (θ̂, θ
∗)|+ |Dτ |(∥θ − θ̂∥+ ∥θ′ − θ∗∥)

≤2L
√
dϵ+ C1ϵ

≤(2L
√
d+ C1)ϵ.

The first inequality holds since ∥θ∥ ≤
√
d. The second inequality holds since |f ′′| ≤ L and

|Dτ | ≤ C1.
Therefore, it holds that

∥
∑
τ

ξτ ⟨ϕτ , Dτ (θ̂, θ
∗)(θ̂− θ∗)∥ ≤ ∥

∑
τ

ξτ ⟨ϕτ , Dτ (θ, θ
′)(θ− θ′)∥+ (2L

√
d+C1)buffer.e(k̃)ϵ,

since |ξτ | ≤ 1.
Let’s define the following shorthands

V (ϕ) =
∑
τ

⟨ϕt, Dτ (θ − θ′)⟩2,
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V (ϕ̂) =
∑
τ

⟨ϕt, Dτ (θ̂ − θ∗)⟩2.

Therefore, by applying the inequality above, we have

V (ϕ) ≤ V (ϕ̂) + 4C1

√
d(2L

√
d+ C1)buffer.e(k̃)ϵ. (7)

The inequality holds because of the square difference formula.
Since for positive number a b and c, if a ≤ b+ c, than

√
a ≤
√
b+
√
c. So, it holds that√

V (ϕ) ≤
√

V (ϕ̂) +

√
4C1

√
d(2L

√
d+ C1)buffer.e(k̃)ϵ. (8)

Since θ∗ is the true parameter and ξτ = (1− q̃τ )− fmτ (⟨ϕτ , θ
∗⟩) which is determined by

truthful bid, it holds E(ξτ |ϕ1:τ , ξ1:τ−1) = 0 whose value is determined by zτ only. Due to
Azuma-Hoeffding inequality (Hoeffding, 1994), it holds that

Pr[|
∑
τ

ξτDτ ⟨ϕτ , θ − θ′⟩| ≥
√
log

2B2HN

δϵ2d
V (ϕ)] ≤ δ

HN
, (9)

for any (θ, θ′) with probability at least 1− δ
HN .

Therefore, it holds that

V (ϕ̂) ≤4C1

√
d(2L

√
d+ C1)buffer.e(k̃)ϵ+ V (ϕ)

≤4C1

√
d(2L

√
d+ C1)buffer.e(k̃)ϵ+ 2

√
log

2B2HN

δϵ2d
V (ϕ) + 6L

≤4C1

√
d(2L

√
d+ C1)buffer.e(k̃)ϵ+ 2

√
log

2B2HN

δϵ2d
[√

V (ϕ̂)

+

√
4C1

√
d(2L

√
d+ C1)buffer.e(k̃)ϵ

]
+ 6L

=4C1

√
d(2L

√
d+ C1) + 2

√
log

2B2HNbuffer.e(k̃)2d

δ

[√
V (ϕ̂)

+

√
4C1

√
d(2L

√
d+ C1)

]
+ 6L

≤4C1

√
d(2L

√
d+ C1) + 2

√
log

2B2HNbuffer.e(k̃)2d

δ

[√
V (ϕ̂)

+

√
4C1

√
d(2L

√
d+ C1)

]
+ 6C4H log2K.

The first inequality holds due to Ineq. (7) while the second one holds due to Ineq. (9) and
Lemma 27. The third inequality holds because of Ineq. (8). The equality holds since we set
ϵ = 1

buffer.e(k̃)
. The final inequality holds because of Lemma 11.

Finally, applying the root formula of the quadratic equation, it is obvious that there
exists a constant B3 > 0 that V (ϕ̂) ≤ B3H log2K.

Similar to Wang et al. (2020), we have√
(θ̂ih − θ∗ih)

TΛbuffer.e(k̃)(θ̂ih − θ∗ih) ≤ c−1
1

√
V (ϕ̂) + 2

√
dλ,
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for any i and h with probability at least 1− δ.

It holds since√
(θ̂ − θ∗)TΛbuffer.e(k̃)(θ̂ − θ∗) ≤

√
(θ̂ − θ∗)T (

∑
τ

ϕτϕT
τ )(θ̂ − θ∗) +

√
(θ̂ − θ∗)T (λI)(θ̂ − θ∗).

Then, we have D2
τ ≥ c21 and ∥(θ̂ih − θ∗ih)∥λI ≤ 2

√
dλ.

In the end, we find that there exists a constant C5 that satisfies√
(θ̂ih − θ∗ih)

TΛbuffer.e(k̃)(θ̂ih − θ∗ih) ≤ C5

√
H logK,

which ends the proof.

C.6 Proof of Lemma 14

Using Cauchy inequality, we have the following statement:

Lemma 28. It holds that

|⟨ϕ(x, v), θ̂ − θ⟩| ≤
√
(θ̂ − θ)TΛ(θ̂ − θ)∥ϕ(x, v)∥Λ−1 .

Specially, taking Λ = Λ
buffer.e(k̃)
h =

∑buffer.e(k̃)
τ=1 ϕ(xτh, υ

τ
h)ϕ(x

τ
h, υ

τ
h)

T + λI, the inequality
holds.

Then Lemma 28 and Lemma 13 lead to Lemma 14.

C.7 Proof of Lemma 15

Firstly, we define R̃k
h(·, ·) =

∑N
i=1 E[max{rk−ih , αk

ih}1(rkih ≥ max{rk−ih , αk
ih)]. Then, |Rk

h(·, ·)−
R̂k

h(·, ·)| ≤ |Rk
h(·, ·)− R̃k

h(·, ·)|+ |R̃k
h(·, ·)− R̂k

h(·, ·)|.
To bound |R̃k

h(·, ·)− R̂k
h(·, ·)|, we have

|R̃k
h(·, ·)− R̂k

h(·, ·)| ≤
N∑
i=1

E|[max{rk−ih , αk
ih}1(rkih ≥ max{rk−ih , αk

ih)]

− [max{r̂k−ih , αk
ih}1(r̂kih ≥ max{r̂k−ih , αk

ih)]|

≤
N∑
i=1

∆1 +∆2 +∆3

≤ (1 + 6C1)NC5

√
H logK∥ϕ(·, ·)∥

(Λ
buffer.e(k̃)
h )−1

,

where

∆1 =|[max{rk−ih , αk
ih}1(rkih ≥ max{rk−ih , αk

ih})]
− [max{r̂k−ih , αk

ih}1(rkih ≥ max{rk−ih , αk
ih})]|,
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∆2 =|[max{r̂k−ih , αk
ih}1(rkih ≥ max{rk−ih , αk

ih})]
− [max{r̂k−ih , αk

ih}1(r̂kih ≥ max{rk−ih , αk
ih})]|

and

∆3 =|[max{r̂k−ih , αk
ih}1(r̂kih ≥ max{rk−ih , αk

ih})]
− [max{r̂k−ih , αk

ih}1(r̂kih ≥ max{r̂k−ih , αk
ih})]|.

The first inequality holds due to properties of convex functions. The second inequality
holds due to triangle inequality. The third inequality holds since ∆1 ≤ |max{rk−ih , αk

ih} −
max{r̂k−ih , αk

ih}| ≤ |r−r̂|, ∆2 ≤ 3C1|r−r̂| and ∆3 ≤ 3C1|r−r̂|. The reason why ∆2 ≤ 3C1|r−
r̂| is max{r̂, α} ≤ 3 and E|1(rkih ≥ max{rk−ih , αk

ih})− 1(r̂kih ≥ max{rk−ih , αk
ih})| ≤ C1|r − r̂|.

To bound |Rk
h(·, ·) − R̃k

h(·, ·)|, we have the following lemmas. We define W k
ih(α) =

E[max{vk−ih , α}1(vkih ≥ max{vk−ih , α}) |ϕk
h] at first.

Lemma 29 (Lemma C.3. (Golrezaei et al., 2019)). Since αk∗
ih is determined by Myerson

Lemma (Myerson, 1981), we have W
′k
ih (α

k∗
ih ) = 0. Furthermore, there exists a constant

B4 that for any α between αk
ih and αk∗

ih , we have |W ′′k
ih (α)| ≤ B4 for any i and h, under

assumption Assumption 2, Assumption 3 and Assumption 4.

Lemma 30 (Lemma C.4. (Golrezaei et al., 2019)). Under Assumption 4, it holds that

|αk∗
ih − αk

ih| ≤ |⟨ϕk
h, θih − θ̂ih⟩|.

By applying Lemma 30, we have

|Rk
h(·, ·)− R̃k

h(·, ·)| ≤
N∑
i=1

B4

2
(αk∗

ih − αk
ih)

2

≤ N
B4

2
(⟨ϕk

h, θih − θ̂ih⟩)2

≤ N
B4

2
C2
5H log2K∥ϕ(·, ·)∥2

(Λ
buffer.e(k̃)
h )−1

≤ N
B4

2
C2
5H log2K∥ϕ(·, ·)∥

(Λ
buffer.e(k̃)
h )−1

1√
λ
.

The first inequality holds due to Taylor expansion. The second inequality holds due to
Lemma 30, while the third one holds due to Lemma 14. The last inequality holds since
∥ϕ∥Λ−1 ≤ 1

λ .

Combining the differences |R̃k
h(·, ·)− R̂k

h(·, ·)| and |Rk
h(·, ·)− R̃k

h(·, ·)|, it holds that

|Rk
h(·, ·)− R̂k

h(·, ·)| ≤ [(1 + 6C1)C5

√
H logK +

B4

2
√
λ
C2
5H log2K]N∥ϕ(·, ·)∥

(Λ
buffer.e(k̃)
h )−1

.

Therefore, there exists a constant C6 which is independent of H and K, satisfying

|Rk
h(·, ·)− R̂k

h(·, ·)| ≤ C6H log2K∥ϕ(·, ·)∥
(Λ

buffer.e(k̃)
h )−1

,

and it ends the proof.
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C.8 Proof of Lemma 16

In order to prove Lemma 16, we have the following lemmas for help.

Lemma 31. For any fixed policy π, let {ωπ
h}h∈[H be the corresponding vectors such that

Qπ
h(·, ·) = R(·, ·) + ⟨ϕ(·, ·), ωπ

h⟩ for any h. Then, it holds that

∥ωπ
h∥ ≤ 3H

√
d,

for any h.

Proof Since it holds

Qπ
h(·, ·) = (R+ PhV

π
h+1)(·.·),

and the linearity of MDP, we have

ωπ
h =

∫
V π
h+1(·)dMh(·).

Therefore, considering |V | ≤ 3H and ∥Mh(S)∥ ≤
√
d, Lemma 31 holds.

Lemma 32. For any (k, h) ∈ [K]× [H], the vector ω
buffer.e(k̃)
h in Algorithm 4 satisfies:

∥ωbuffer.e(k̃)
h ∥ = ∥ωk

h∥ ≤ 3H

√
dbuffer.e(k̃)

λ
≤ 3H

√
dk

λ
.

Proof Since we only update at episode buffer.e(k̃), ωk
h is the same as ω

buffer.e(k̃)
h .

For any vector ν ∈ Rd, we have

|νTωbuffer.e(k̃)
h | = |νT (Λbuffer.e(k̃)

k )−1

buffer.e(k̃)∑
τ=1

ϕτ
hmax

a
Qh+1(·, ·)|

≤
∑
τ

3H|νT (Λbuffer.e(k̃)
k )−1ϕτ

h|

≤ 3H

√
[
∑
τ

νT (Λ
buffer.e(k̃)
k )−1ν][

∑
τ

(ϕτ
h)(Λ

buffer.e(k̃)
k )−1ϕτ

h]

≤ 3H∥ν∥

√
dbuffer.e(k̃)

λ
.

The first inequality holds since Q ≤ 3H, while the second inequality holds due to Cauchy

inequality. The third inequality holds since (Λ
buffer.e(k̃)
k )−1 ⪯ 1

λI and the following lemma.
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Lemma 33 (Lemma D.1. (Jin et al., 2020)). Let Λbuffer.e(k̃) = λI +
∑buffer.e(k̃)

τ=1 ϕτϕ
T
τ

where ϕτ ∈ Rd and λ > 0. Then it holds

buffer.e(k̃)∑
τ=1

ϕT
τ (Λ

buffer.e(k̃))−1ϕτ ≤ d.

Thus, with ∥ωbuffer.e(k̃)
h ∥ = maxν:∥ν∥=1 |νTω

buffer.e(k̃)
h |, it ends the proof.

In order to prove the next lemma, we introduce two useful lemmas at first.

Lemma 34. For any given h, suppose {xτ}∞τ=1 being a stochastic process on state space S
with corresponding filtration {Fτ}∞τ=0. Let {ϕτ}∞τ=1 be an Rd-valued stochastic process when

ϕτ ∈ Fτ−1. Since ∥ϕτ∥ ≤ 1 and Λbuffer.e(k̃) = λI +
∑buffer.e(k̃)

τ=1 ϕτ , then for any δ, with

probability at least 1 − δ, for any k corresponding to buffer.e(k̃) and any V ∈ V so that
supx |V (x)| ≤ 3H, we have

∥
k∑

τ=1

ϕτ{V (xτ )− E[V (xτ ) | Fτ−1]}∥2Λ−1

buffer.e(k̃)

≤54C2H
3 log2K

λ log 1
γ

+
32k2ϵ2

λ

+ 144H2[
d

2
log

k + λ

λ
+ log

Nϵ

δ
],

where Nϵ is the ϵ-covering number of V with respect to the distance dist(V, V ′) = supx(V (x)−
V ′(x)).

Proof First of all, we have

∥
k∑

τ=1

ϕτ{V (xτ )− E[V (xτ ) | Fτ−1]}∥2Λ−1

buffer.e(k̃)

≤2× 2∥
k∑

τ=1

ϕτ{V (xτ )− E[V (xτ ) | Fτ−1]}1{k ̸∈ buffer}∥2
Λ−1
k

+ 2× 3H
1

λ
3H

3HC2 log
2K

log 1
γ

≤4∥
k∑

τ=1

ϕτ{V (xτ )− E[V (xτ ) | Fτ−1]}∥2Λ−1
k

+
54C2H

3 log2K

λ log 1
γ

.

Firstly, we have (a + b)2 ≤ 2a2 + 2b2. Then, it holds since we divide the episodes into
two parts, the ones in buffer and the ones not. For the ones in buffer, due to the def-
inition of buffer.e(k̃), it is easy to prove that it is smaller than 4∥

∑k
τ=1 ϕτ{V (xτ ) −

E[V (xτ ) | Fτ−1]}1{k ̸∈ buffer}∥2
Λ−1
k

. As for the one not in buffer, 54C2H3 log2 K

λ log 1
γ

is a trivial

bound due to Lemma 9 and V (·) ≤ 3H.

Therefore, with Lemma D.4. in Jin et al. (2020), we simply replace its H with our upper
bound of V (·), i.e., 3H, and it finishes our proof.
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Lemma 35. Let V denote a class of functions mapping from S to R with the following
parametric form

V (·) = min{max
a

ωTϕ(·, υ) + R̂(·, υ) + β∥ϕ(·, υ)∥Λ−1 , 3H},

where ∥ω∥ ≤ L, β ∈ [0, B] and the minimum eigenvalue satisfies λmin(Λ) ≥ λ. Sup-
pose ∥ϕ(·, ·)∥ ≤ 1 and let Nϵ be the ϵ-covering number of V with respect to the distance
dist(V, V ′) = supx |V (x)− V ′(x)|. Then, it holds

logNϵ ≤ d log(1 +
8L

ϵ
) + d2 log(1 +

32
√
dB2

λϵ2
) + dN log(1 +

8NB5

√
d

ϵ
),

where B5 is a constant.

Proof Due to Lemma D.6. in Jin et al. (2020), it holds that

dist(V1, V2) ≤ ∥ω1 − ω2∥+
√
∥A1 −A2∥F + sup

x,υ
|R̂1(x, υ)− R̂2(x, υ)|,

where A = β2Λ−1. Let Cω be an ϵ
4 -cover of {ω ∈ Rd | ∥ω∥ ≤ L}, and then it holds

|Cω| ≤ (1 + 8L
ϵ )d. Similarly, for ϵ2

16 -cover for {A}, we have |CA| ≤ [1 + 32B2
√
d

λϵ2
]d

2
.

Now, in order to bound the covering number corresponding to R̂(x, υ), we show that it
links to {θ̂i}Ni=1 first. As R̂(·, ·) is function of {µ̂i}Ni=1 and F (·) is differentiable with |f | ≤ C1,

it holds that ∂R̂
∂µi
≤ B5 for any i, where B5 is a constant. B5 is bounded since µi ∈ [0, 1]

and the interval [0, 1] is compact. Therefore, since µ̂ = ⟨ϕ, θ̂⟩, it holds that

sup
x,υ
|R̂1(x, υ)− R̂2(x, υ)| ≤ sup

ϕ:∥ϕ∥≤1

N∑
i=1

B5|(θ̂1i − θ̂2i)
Tϕ|

≤
N∑
i=1

B5∥θ̂1i − θ̂2i∥.

Therefore, it holds that combining ϵ
2NB5

-cover for θ̂i,

|CR̂| ≤ (1 +
8NB5

√
d

ϵ
)dN .

Then, it finishes the proof.

Now, with lemmas prepared, we have the following lemma.

Lemma 36. For any δ, with probability at least 1 − δ, there exists constants B6 and B7

independent of K and H so that

∀(k, h) ∈ [K]× [H] : ∥
k∑

τ=1

ϕτ
h[V̂

k
h+1(x

τ
h+1)− PV̂ k

h+1(x
τ
h, υ

τ
h)]∥2

(Λ
buffer.e(k̃)
h )

−1 ≤B6H
3 log2K

+B7H
2 logC7.
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Proof Combining Lemma 32, Lemma 34 and Lemma 35, we set L = 3H
√

dk
λ . With

Algorithm 4, we have B = C7 + C6H log2K. Then we have

∥
k∑

τ=1

ϕτ
h[V̂

k
h+1(x

τ
h+1)− PV̂ k

h+1(x
τ
h, υ

τ
h)]∥2

(Λ
buffer.e(k̃)
h )

−1

≤54C2H
3 log2K

λ log 1
γ

+ 72dH2 log
k + λ

λ
+ 144H2d log(1 +

24H

ϵ

√
dk

λ
) + 144H2 log

KH

δ

+ 144H2d2 log[1 +
32
√
d(C7 + C6H log2K)2

λϵ2
] + 144H2dN log(1 +

8NB5

√
d

ϵ
) +

32k2ϵ2

λ
.

Therefore, by setting λ = 1 and ϵ = dH
k , then we have the right side of the inequality is

O(H3 log2K +H2 logC7) and it finishes our proof.

Now, let’s show the determination of C7.

Lemma 37. There exist a constant B8 so that C7 = B8H
3
2 logK, and for any fixed policy

π, on Good Event E , i.e., all inequalities hold, we have for all (x, υ, h, k) ∈ S×Υ× [H]× [K]
that:

⟨ϕ(·, ·), ωk
h⟩+ R̂k

h(·, ·)−Qπ
h(·, ·) = Ph(V̂

k
h+1 − V π

h+1)(·, ·) + ∆k
h(·, ·),

where ∆k
h(·, ·) ≤ (C7 + C6H log2K)∥ϕ(·, ·)∥

(Λ
buffer.e(k̃)
h )−1

.

Proof Due to Bellman equation, we know that for any (x, υ, h) ∈ S ×Υ× [H], it holds

Qπ
h(·, ·) = Rh(·, ·) + ⟨ϕ(·, ·), ωπ

h⟩ = (Rh + PhV
π
h+1)(·, ·).

Therefore, it gives

⟨ϕ(·, ·), ωk
h⟩+ R̂k

h(·, ·)−Qπ
h(·, ·) = ⟨ϕ(·, ·), ωk

h − ωπ
h⟩+ (R̂k

h −Rh)(·, ·).

Then, since ωk
h = ω

buffer.e(k̃)
h , it holds that

ωk
h − ωπ

h = (Λ
buffer.e(k̃)
h )−1

buffer.e(k̃)∑
τ=1

ϕτ
hV̂

k
h+1(x

τ
h+1)− ωπ

h

= (Λ
buffer.e(k̃)
h )−1{−λωπ

h +

buffer.e(k̃)∑
τ=1

ϕτ
h[V̂

k
h+1(x

τ
h+1)− PhV

π
h+1(x

τ
h, υ

τ
h)]}

= δ1 + δ2 + δ3,

where
δ1 = −λ(Λbuffer.e(k̃)

h )−1wπ
h ,

δ2 = (Λ
buffer.e(k̃)
h )−1

buffer.e(k̃)∑
τ=1

ϕτ
h[V̂

k
h+1(x

τ
h+1)− PhV̂

k
h+1(x

τ
h, υ

τ
h)],
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δ3 = (Λ
buffer.e(k̃)
h )−1

buffer.e(k̃)∑
τ=1

ϕτ
hPh(V̂

k
h+1 − V π

h+1)(x
τ
h, υ

τ
h).

Then, we begin to bound items corresponding to δ1, δ2 and δ3 individually.
Firstly, it holds

|⟨ϕ(·, ·), δ1⟩| ≤
√
λ∥wπ

h∥∥ϕ(·, ·)∥(Λbuffer.e(k̃)
h )−1

≤3H
√
dλ∥ϕ(·, ·)∥

(Λ
buffer.e(k̃)
h )−1

.

The first inequality holds due to Cauchy inequality and Λbuffer.e(k̃) ⪰ λI. The second
inequality holds due to Lemma 31.

Secondly, it holds that

|⟨ϕ(·, ·), δ2⟩| ≤
√

B6H3 log2K +B7H2 logC7∥ϕ(·, ·)∥
(Λ

buffer.e(k̃)
h )−1

.

It holds because of Lemma 36.
Lastly, we have

⟨ϕ(·, ·), δ3⟩ = ⟨ϕ(·, ·), (Λbuffer.e(k̃)
h )−1

buffer.e(k̃)∑
τ=1

ϕτ
hPh(V̂

k
h+1 − V π

h+1)(x
τ
h, υ

τ
h)⟩

= ⟨ϕ(·, ·), (Λbuffer.e(k̃)
h )−1

buffer.e(k̃)∑
1

ϕτ
h(ϕ

τ
h)

T

∫
(V̂ k

h+1 − V π
h+1)(x

′)dMh(x
′)⟩

= ⟨ϕ(·, ·),
∫
(V̂ k

h+1 − V π
h+1)(x

′)dMh(x
′)⟩ − λ⟨ϕ(·, ·),

∫
(V̂ k

h+1 − V π
h+1)dMh⟩

= Ph(V̂
k
h+1 − V π

h+1)(·, ·)− λ⟨ϕ(·, ·), (Λbuffer.e(k̃)
h )−1

∫
(V̂ k

h+1 − V π
h+1)(x

′)dMh(x
′)⟩

≤ Ph(V̂
k
h+1 − V π

h+1)(·, ·) + 3H
√
dλ∥ϕ(·, ·)∥

(Λ
buffer.e(k̃)
h )−1

.

The second and fourth equations hold due to the definition of the operator Ph. The third
equation holds due to simple algebra arrangement. The inequality holds due to Cauchy
inequality, V (·) ≤ 3H and Λbuffer.e(k̃) ⪰ λI.

With the bounds in hand, we have ∆h
k(·, ·) ≤ (3H

√
dλ+

√
B6H3 log2K +B7H2 logC7+

3H
√
dλ + C6H log2K)∥ϕ(·, ·)∥

(Λ
buffer.e(k̃)
h )−1

. Then, it is obviously that there exists a con-

stant B8, so that B8H
3
2 logK ≥ 3H

√
dλ+

√
B6H3 log2K +B7H2 logC7 + 3H

√
dλ and it

finishes the proof.

Now, we are ready to show the reason why we choose such a bonus. We have the
following lemma.

Lemma 38. Under the setting of Theorem 5, on the Good Event E , it holds that for any
(x, υ, h, k) ∈ S ×Υ× [H]× [K],

Q̂k
h(x, υ) ≤ Qπ∗

h (x, υ).
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Proof We will prove this lemma by induction.

First of all, for the last step H, since the value function is zero at H + 1, we have

|R̂k
H(·, ·) + ⟨ϕ(·, ·), ωk

H⟩ −Qπ∗
H (·, ·)| ≤ (C7 + C6H log2K)∥ϕ(·, ·)∥

(Λ
buffer.e(k̃)
H )−1

due to Lemma 37. Therefore, we have

Qπ∗
H (·, ·) ≤ min{R̂k

H(·, ·) + ⟨ϕ(·, ·), ωk
H⟩+ (C7 + C6H log2K)∥ϕ(·, ·)∥

(Λ
buffer.e(k̃)
H )−1

, 3H},

and we use Qk
H(·, ·) to represent the right side.

Now, supposing the statement holds at step h + 1, then for step h, with Lemma 37, it
holds that

|[R̂k
h + ⟨ϕ, ωk

h⟩ −Qπ∗
h − Ph(V

k
h+1 − V π∗

h+1)](·, ·)| ≤ (C7 + C6H log2K)∥ϕ(·, ·)∥
(Λ

buffer.e(k̃)
h )−1

.

By the induction assumption that Ph(V
k
h+1 − V π∗

h+1)(·, ·) ≥ 0, it holds that

Qπ∗
h (·, ·) ≤ min{R̂k

h(·, ·)+⟨ϕ(·, ·), ωk
h⟩+(C7+C6H log2K)∥ϕ(·, ·)∥

(Λ
buffer.e(k̃)
h )−1

, 3H} = Qk
H(·, ·),

which ends the proof.

Then, we have the following lemma about a recursive formula from δkh = V k
h (x

k
h) −

V
πk̃
h (xkh).

Lemma 39. Let δkh = V k
h (x

k
h)−V

πk̃
h (xkh) and ξkh+1 = E[δkh+1 |xkh, υkh]−δkh+1. Then conditional

on Good Event E , it holds that for any (k, h) ∈ [K]× [H],

δkh ≤ δkh+1 + ξkh+1 + 2(C7 + C6H log2K)∥ϕ(·, ·)∥
(Λ

buffer.e(k̃)
h )−1

.

Proof Due to Lemma 37, it holds that

Q̂k
h(·, ·)−Q

πk̃
h (·, ·) ≤ Ph(V

k
h+1 − V

πk̃
h+1)(·, ·) + 2(C7 + C6H log2K)∥ϕ(·, ·)∥

(Λ
buffer.e(k̃)
h )−1

.

Then, since πk̃ = πbuffer.e(k̃) is the greedy policy before mixture at episode k by Algorithm 4,
we have

δkh = Qk
h(x

k
h, υ

k
h)−Q

πk̃
h (xkh, υ

k
h).

Then, it ends the proof.

With these preparations, we begin to prove Lemma 16.
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Using notations in Lemma 39, it holds that conditional on Good Event E

∆1 =
K∑
τ=1

[V π∗
1 (xk1)− V

πk̃
1 (xk1)]1(k ̸∈ buffer)

≤
K∑
τ=1

δk1 1(k ̸∈ buffer)

≤
K∑
τ=1

H∑
h=1

ξkh + 2(C7 + C6H log2K)∥ϕ(·, ·)∥
(Λ

buffer.e(k̃)
h )−1

1(k ̸∈ buffer)

≤
K∑
τ=1

H∑
h=1

ξkh + 2
√
2(C7 + C6H log2K)∥ϕ(·, ·)∥(Λk

h)
−1 1(k ̸∈ buffer)

≤
K∑
τ=1

H∑
h=1

ξkh + 2
√
2(C7 + C6H log2K)∥ϕ(·, ·)∥(Λk

h)
−1 .

The first inequality holds due to Lemma 38, while the second one holds due to Lemma 39.
The third inequality holds due to the process of Algorithm 3, while the last one is trivial.

For the first term, since the computation of V̂ k
h (·) is independent of the new observation

xkh at episode k, we obtain that {ξkh} is a martingale difference sequence satisfying |ξkh| ≤ 3H
for all (k, h). Therefore, with Azuma-Hoeffding inequality (Hoeffding, 1994), it holds

Pr(
K∑
τ=1

H∑
h=1

ξkh ≥ ϵ) ≥ exp(− ϵ2

18KH3
).

Then, with probability at least 1− δ, we have

K∑
τ=1

H∑
h=1

ξkh ≤
√
18KH3 log

1

δ
.

For the second term, thanks to Abbasi-Yadkori et al. (2011), it holds that

K∑
τ=1

(ϕτ
h)

T (Λτ
h)

−1ϕτ
h ≤ 2d log

λ+ τ

λ
.

Then with Cauchy inequality, we have

K∑
τ=1

H∑
h=1

∥ϕτ
h∥(Λτ

h)
−1 ≤

H∑
h=1

√
K[

K∑
τ=1

(ϕτ
h)

T (Λτ
h)

−1ϕk
h]

1
2 ≤ H

√
2dK log

λ+K

λ
.

Finally, combining the two terms and we have

∆1 ≤
√
18KH3 log

1

δ
+ 2
√
2(C7 + C6H log2K)H

√
2dK log

λ+K

λ

≤ C8H
2.5

√
K log5K,

and it finishes our proof.
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D. Auxiliary Lemmas and Proofs in Appendix B

In this section, we provide proof of lemmas in Appendix B in detail. We organize this
section in the order of lemmas.

D.1 Proof of Lemma 18

In Algorithm 6, there are two types of {buffer.e(k̃)}. The number of {buffer.e(k̃)} satis-
fying 2(Λk

h)
−1 ̸≻ (Λ

buffer.e(k̃)
h )−1 is smaller than 3C2H log2 K

log 1
γ

due to Lemma 9. The number

of {buffer.e(k̃)} when log2 k is an integer is smaller than [log2K] + 1. Combining the two
parts finishes the proof.

D.2 Proof of Lemma 19

Since we have buffer period, the bound of the size of overbid or underbid is as same as the
situation when market noise distribution is known. Then, recall that the proof of Lemma 11
is conditional on reserve price and others’ bid, it doesn’t matter whether we consider q or
q̃ because the only difference between them is the way generating reserve has been π0.
Conditional on reserve, the proof of Lemma 11 still holds on regarding to q̃.

With the same methodology in Lemma 11, we have the lemma due to Lemma 18.

D.3 Proof of Lemma 20

Similar to the proof of Lemma 13, we replace 1 − F (mτ − 1 − ⟨ϕτ , θ⟩) by 1
3N (1 + ⟨ϕτ , θ⟩)

to form Equation (3). We just need to prove that E[q̃ − 1
3N (1 + ⟨ϕτ , θ⟩)] = 0 if bidders

bid truthfully. If q̃τih = 1, it satisfies that we choose i using π0 with reserve price ρi and
1 + ⟨ϕτ , θ⟩ + z ≥ ρi. With some conditional probability calculation, the probability is
1
3N (1 + ⟨ϕτ , θ⟩).

Therefore, by simply setting c1 = C1 =
1
3N in Lemma 13, we prove Lemma 20.

D.4 Proof of Lemma 22

First of all, if every buyer bids truthfully, then with Lemma 17, it holds with probability at
least 1− δ

K for each update that

|F (·)− F̂ (·)| ≤
√

1

2
log

2K

δ
(NHbuffer.e(k̃))−

1
2 .

However, bidders may overbid or underbid for less than C3H
K due to Lemma 10 and the

estimation of µ has error. Therefore, the c.d.f that F̂ (·) estimates is not the same as F (·).
Since |f(·)| ≤ C1, the difference because of overbid or underbid is smaller than C1C3H

K .
Then, due to Lemma 21, the difference because of error in µ is smaller than

C1C11

√
H logK

∑H
h=1

∑buffer.e(k̃)
τ=1 ∥ϕ(xτh, υτh)∥(Λbuffer.e(k̃)

h )−1

Hbuffer.e(k̃)
≤ C1C11

√
H logK

√
d√

buffer.e(k̃)
.

The inequality holds since we have the mean value inequality and Lemma 33.
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Since the number of episodes in buffer for each buyer i is no larger than C9H log2K, it
holds that

|F (·)− F̂ (·)| ≤
√

1

2
log

2K

δ
(NHbuffer.e(k̃))

− 1
2 +

C1C3H

K
+

C9H log2K

buffer.e(k̃)

+ C1C11

√
H logK

√
d√

buffer.e(k̃)
.

Because the number of episode we run Equation (3) is smaller than K, then the total
probability happening Bad Event E c is smaller than δ. Then, it ends the proof.

D.5 Proof of Lemma 23

In order to prove Lemma 23, we introduce the following lemma first.

Lemma 40. Under assumption Assumption 3, when Lemma 22 holds, using histogram
method to estimate p.d.f f(·) leads to the following bound that for any x

|f(x)− f̂(x)| ≤ D1

√
H logK

buffer.e(k̃)
1
4

,

where D1 is a constant.

D.5.1 Proof of Lemma 40

With Lemma 22 in hand, we divide [−1, 1] into 2M parts denoted by {−M, . . . , 0, . . . ,M−1}
uniformly, then we have

f̂(x) = M [F̂ (
i+ 1

M
)− F̂ (

i

M
)],

where x ∈ ( i
M , i+1

M ].
Under assumption Assumption 3, it holds that

|f(x)−M [F (
i+ 1

M
)− F (

i

M
)]| ≤ L

M
.

Therefore, it holds that

|f(x)− f̂(x)| ≤ 2MC12
H log2K√
buffer.e(k̃)

+
L

M
.

By setting M = buffer.e(k̃)
1
4

√
H logK

, we finish our proof.

Therefore, unlike Lemma 30, we have the following lemma.

Lemma 41. Under Assumption 4, it holds that

|αk∗
ih − αk

ih| ≤ |⟨ϕk
h, θih − θ̂ih⟩|+

D2H log2K

buffer.e(k̃)
1
4

,

where D2 is a constant.
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D.5.2 Proof of Lemma 41

Myerson (1981) shows that the optimal reserve price satisfies

α = 1 + µ(·, ·) + ϕ−1(−1− µ(·, ·)),

where ϕ(x) = x− 1−F (x)
f(x) is virtual valuation function.

We use α∗ to denote optimal reserve price while α̂ to denote the reserve price we use
with F̂ (·) and f̂(·). Also, we use α̃ to denote reserve price corresponding to µ̂, F (·) and
f(·).

Lemma 30 shows that |α̃− α∗| ≤ |⟨ϕk
h, θih − θ̂ih⟩|.

To bound |α̃− α̂|, we have

|1− F (·)
f(·)

− 1− F̂ (·)
f̂(·)

| ≤ |1− F (·)
f(·)

− 1− F̂ (·)
f(·)

|+ |1− F̂ (·)
f(·)

− 1− F̂ (·)
f̂(·)

|

≤ C12H log2K

c1

√
buffer.e(k̃)

+
D1

√
H logK

c21buffer.e(k̃)
1
4

.

The first inequality holds due to triangle inequality. The second inequality holds due to
Assumption 2, Lemma 22 and Lemma 40.

Then, we will show that ϕ′(·) ≤ 1.

It holds that ϕ(x) = x − 1−F (x)
f(x) = x + 1

log′(1−F (x))
. Under Assumption 4, it holds that

1− F (·) is log-concave implying log′(1− F (·)) is decreasing. Therefore, ϕ′(x) ≥ 1.

Therefore, we have |ϕ(α̂)−ϕ̂(α̂)| ≤ C12H log2 K

c1
√

buffer.e(k̃)
+ D1

√
H logK

c21buffer.e(k̃)
1
4
and ϕ(α̃) = ϕ̂(α̂). Then,

it holds that

|α̂− α̃| ≤ C12H log2K

c1

√
buffer.e(k̃)

+
D1

√
H logK

c21buffer.e(k̃)
1
4

,

because ϕ′(·) ≥ 1.
Then, it ends our proof.
Now, we are ready to prove Lemma 23. Using notations in Lemma 15, we use another

factor F to show that we use F (·) and f(·) in the function while factor F̂ to denote the use
of F̂ (·) and f̂(·).

With the same methodology in Lemma 15, it holds that

|Rk
h(·, ·, F )− R̂k

h(·, ·, F )| ≤[(1 + 6C1)C11

√
H logK]N∥ϕ(·, ·)∥

(Λ
buffer.e(k̃)
h )−1

+
NB4

2
[2(|⟨ϕk

h, θih − θ̂ih⟩|)2 + 2(
D2H log2K

buffer.e(k̃)
1
4

)2]

≤D3H log2K∥ϕ(·, ·)∥
(Λ

buffer.e(k̃)
h )−1

+D4H
2 log4K

1√
buffer.e(k̃)

,

where D3 and D4 are two constants. The first inequality holds since (a+ b)2 ≤ 2(a2 + b2).
The second inequality holds by rearrangement.
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Then, we will bound |R̂k
h(·, ·, F )− R̂k

h(·, ·, F̂ )|.
Since R̂k

h(·, ·, F ) =
∑N

i=1 EF [max{r̂k−ih , αk
ih}1(r̂kih ≥ max{r̂k−ih , αk

ih})] and R̂k
h(·, ·, F̂ ) =∑N

i=1 EF̂ [max{r̂k−ih , αk
ih}1(r̂kih ≥ max{r̂k−ih , αk

ih})], we have that the difference of expected

revenue about each buyer is smaller than 3NC12
H log2 K√
buffer.e(k̃)

. It comes from that the ex-

pected revenue depends on N -fold integral with respect to random variable {zkih}Ni=1. Since∫
x(dF − dF ′) = −

∫
(F − F ′)dx ≤ 3∥F − F ′∥∞ ≤ 3C12

H log2 K√
buffer.e(k̃)

, each integral has error

less than 3C12
H log2 K√
buffer.e(k̃)

. With N buyers in total, it holds that

|R̂k
h(·, ·, F )− R̂k

h(·, ·, F̂ )| ≤ 3N2C12
H log2K√
buffer.e(k̃)

.

Combining the two parts, it holds

|Rk
h(·, ·)− R̂k

h(·, ·)| = |Rk
h(·, ·, F )− R̂k

h(·, ·, F̂ )|

≤ C13H log2K∥ϕ(·, ·)∥
(Λ

buffer.e(k̃)
h )−1

+
C14H

2 log4K√
buffer.e(k̃)

,

which ends the proof.

D.6 Proof of Lemma 24

Now, we introduce some lemmas in parallel in order to prove Lemma 24.

Lemma 42. For any given h omitted for convenience, suppose {xτ}∞τ=1 being a stochastic
process on state space S with corresponding filtration {Fτ}∞τ=0. Let {ϕτ}∞τ=1 be an Rd-valued

stochastic process when ϕτ ∈ Fτ−1. Since ∥ϕτ∥ ≤ 1 and Λbuffer.e(k̃) = λI +
∑buffer.e(k̃)

τ=1 ϕτ ,

then for any δ, with probability at least 1− δ, for any k corresponding to buffer.e(k̃) and
any V ∈ V so that supx |V (x)| ≤ 3H, we have

∥
k∑

τ=1

ϕτ{V (xτ )− E[V (xτ ) | Fτ−1]}∥2Λ−1

buffer.e(k̃)

≤54C9H
3 log2K

λ log 1
γ

+
32k2ϵ2

λ

+ 144H2[
d

2
log

k + λ

λ
+ log

Nϵ

δ
],

where Nϵ is the ϵ-covering number of V with respect to the distance dist(V, V ′) = supx(V (x)−
V ′(x)).

Lemma 43. Let V denote a class of functions mapping from S to R with the following
parametric form

V (·) = min{max
a

ωTϕ(·, υ) + R̂(·, υ) + β∥ϕ(·, υ)∥Λ−1 +A, 3H},

where ∥ω∥ ≤ L, β ∈ [0, B], A = C14H2 log4 K√
buffer.e(k̃)

in episode k and the minimum eigenvalue

satisfies λmin(Λ) ≥ λ. Suppose ∥ϕ(·, ·)∥ ≤ 1 and let Nϵ be the ϵ-covering number of V with
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respect to the distance dist(V, V ′) = supx |V (x)− V ′(x)|. Then, it holds

logNϵ ≤ d log(1 +
8L

ϵ
) + d2 log(1 +

32
√
dB2

λϵ2
) + dN log(1 +

16NB5

√
d

ϵ
) + logN ϵ

12N2
(F),

where B5 is a constant.

D.6.1 Proof of Lemma 43

When F (·) is unknown, it holds that

sup
x,υ
|R̂1(x, υ)− R̂2(x, υ)| =sup

x,υ
|R̂1(x, υ, F̂1)− R̂2(x, υ, F̂2)|

≤ sup
x,υ
|R̂1(x, υ, F̂1)− R̂2(x, υ, F̂1)|

+ sup
x,υ
|R̂2(x, υ, F̂1)− R̂2(x, υ, F̂2)|.

Then, we use Cθ̂ to denote the cardinality of the balls corresponding to θ̂ and CF to
denote the cardinality of the balls corresponding to F .

Like the proof of Lemma 35, we simply use ϵ
4NB5

-ball to cover θ̂i, and it holds that

|Cθ̂| ≤ (1 +
16NB5

√
d

ϵ
)dN .

Conditional on ω, A and {θ̂i}Ni=1, with Lemma 23, we know that in order to satisfy
supx,υ |R̂(x, υ, F̂ )− R̂(x, υ, F )| ≤ ϵ

4 , what we need is ∥F̂ − F∥∞ ≤ ϵ
12N2 . Then, it ends the

proof.
Then, it holds the following lemma.

Lemma 44. For any δ, with probability at least 1 − δ, there exists constants B6 and B7

independent of K and H so that

∀(k, h) ∈ [K]× [H] : ∥
k∑

τ=1

ϕτ
h[V̂

k
h+1(x

τ
h+1)− PV̂ k

h+1(x
τ
h, υ

τ
h)]∥2

(Λ
buffer.e(k̃)
h )

−1 ≤D5H
3

+D6H
2 logC15,

where D5 ∼ Õ(1) omitting logK and D6 is a constant.

Proof Similar to the proof of Lemma 36, we just replace Nϵ by d log(1 + 8L
ϵ ) + d2 log(1 +

32
√
dB2

λϵ2
)+dN log(1+ 16NB5

√
d

ϵ )+logN ϵ
12N2

(F). Then, we set λ = 1, B = C15+C13H log2K

and ϵ = dH
k . With Assumption 6, we finishes our proof.

Now, let’s show the determination of C15.

Lemma 45. There exist D7 ∼ Õ(1) so that C15 = D7H
3
2 , and for any fixed policy π, on

Good Event E , i.e., all inequalities hold, we have for all (x, υ, h, k) ∈ S × Υ × [H] × [K]
that:

⟨ϕ(·, ·), ωk
h⟩+ R̂k

h(·, ·)−Qπ
h(·, ·) = Ph(V̂

k
h+1 − V π

h+1)(·, ·) + ∆k
h(·, ·),

where ∆k
h(·, ·) ≤ (C15 + C13H log2K)∥ϕ(·, ·)∥

(Λ
buffer.e(k̃)
h )−1

+ C14
H2 log4 K√
buffer.e(k̃)

.
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Proof The proof of Lemma 45 is the same as proof of Lemma 37. Let’s show the determi-
nation of D7 in parallel. With Lemma 44 in hand, it holds that

D7H
3
2 ≥ 3H

√
dλ+

√
D5H3 +D6H2 logC15 + 3H

√
dλ.

Then, it is easy to see the existence of D7 where D7 ∼ Õ(1).

Also, we have the following lemma about the recursive formula from δkh = V k
h (x

k
h) −

V
πk̃
h (xkh). It holds due to Lemma 45 and Lemma 38.

Lemma 46. Let δkh = V k
h (x

k
h)−V

πk̃
h (xkh) and ξkh+1 = E[δkh+1 |xkh, υkh]−δkh+1. Then conditional

on Good Event E , it holds that for any (k, h) ∈ [K]× [H],

δkh ≤ δkh+1 + ξkh+1 + 2(C15 + C13H log2K)∥ϕ(·, ·)∥
(Λ

buffer.e(k̃)
h )−1

+ 2C14
H2 log4K√
buffer.e(k̃)

.

Now, we are ready to prove Lemma 24.
Similar to the proof of Lemma 16, it holds that

∆1 ≲ Õ(
√
H5K) +

K∑
k=1

H∑
h=1

2C14
H2 log4K√
buffer.e(k̃)

.

Due to Algorithm 6, we have k ≤ 2buffer.e(k̃). Therefore, it holds that

K∑
k=1

1√
buffer.e(k̃)

≤
K∑
k=1

√
2√
k
≤ 2
√
2K.

Therefore, it holds that

∆1 ≲ Õ(
√
H5K) + Õ(H3

√
K),

which ends the proof.
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